

On the Weil representation

Chunhui Wang

School of Mathematics and Statistics
Wuhan University

2025/12/27

References: Weil Representations

- L. Barthel, *Local Howe correspondence for groups of similitudes*, J. Reine Angew. Math., 414 (1991), 207-220.
- P. Cartier, *Quantum Mechanical Commutation Relations and Theta Functions*, Proc. of Symp. Pure Mathematics, 9, Amer. Math. Soc., 1966, pp. 361-38.
- G. Lion, M. Vergne, *The Weil representation Maslov index and Theta series*, Progress in Math., vol.6, Birkhauser, Boston, 1980.
- . Moeglin, M.-F. Vignéras, and J.-L. Waldspurger, *Correspondances de Howe sur un corps p -adique*, Lecture Notes in Math. 1291, Springer-Verlag, Berlin, 1987.

References: Weil Representations

- P.Perrin, *Représentations de Schrödinger. Indice de Maslov et groupe metaplectique*, in “Non commutative Harmonic Analysis and Lie Groups”, Lect. Notes Math. 880 (1981), 370-407.
- R.R.Rao, *On some explicit formulas in the theory of the Weil representation*, Pacific J. Math. 157 (1993), 335-371.
- S.S.Kudla, *Notes on the local theta correspondence*, preprint, available at <http://www.math.utotonto.ca/~skudla/castle.pdf>, 1996.
- A.Weil, *Sur certains groupes d'opérateurs unitaires*, Acta Math. 111 (1964), 143-211.

Notation and conventions

- F : the usual real field.
- ψ : a non-trivial unitary character of F .
- (W, \langle , \rangle) : a symplectic vector space of dimension $2m$ over F .
- $Sp(W)$: the corresponding symplectic group.
- $\mu_n = \{t \in \mathbb{C} \mid t^n = 1\}$.

Heisenberg group

The Heisenberg group $H(W)$, attached to W and F , is a topological group $W \oplus F$, with the law

$$(w, t)(w', t') = (w + w', t + t' + \frac{\langle w, w' \rangle}{2})$$

where $w, w' \in W, t, t' \in F$.

Stone-von Neumann's theorem

Theorem (Stone-von Neumann's theorem)

There exists a unique (up to isomorphism) unitary irreducible complex representation of $H(W)$ with central character ψ .

Let us call it the Heisenberg representation, and denote it by π_ψ .

(*) According to Weil's work, this representation can be extended to a projective representation of $Sp(W)$, and then to an actual representation of a \mathbb{C}^\times -covering group over $Sp(W)$.

Weil index

Let (Q, V) be a non-degenerate quadratic vector space on F .

Theorem (André Weil)

*There exists a unique root of unity of degree 8, called the **Weil index** attached to $\psi(Q)$, denoted by $\gamma_\psi(Q)$, such that*

$$\mathcal{F}(\psi(Q)dv) = \gamma_\psi(Q)|\rho|_F^{-\frac{1}{2}}\psi(Q^*)^{-1}dv^*,$$

for $\psi(Q)dv \in S^*(V)$, and $\psi(Q^*)^{-1}dv^* \in S^*(V^*)$.

Remark

The Weil index only depends on the Witt class of (Q, V) and ψ .

Weil index: Example

- $F = \mathbb{R}$.
- $\psi_0(t) = e^{2\pi it}$.
- $\psi = \psi_0^e$, for some $e \in F^\times$.

Example (Rao Prop. A.10)

If $V = F$ and $Q(x) = x^2$, then $\gamma_\psi(Q) = \psi_0\left(\frac{\text{sign } e}{8}\right)$.

Lemma ([Rao, Def.A.6])

$$\gamma_\psi(Q) = \epsilon(Q) \gamma(\psi)^{\dim V} \gamma(\det Q, \psi).$$

2-cocycle I

- $W = X \oplus X^*$: a complete polarization.
- $Q(g_1, g_2) = Q(X^*, X^*g_2^{-1}, X^*g_1)$: the corresponding Leray invariant.
- Define $\tilde{c}_{X^*}(g_1, g_2) = \gamma_\psi(Q(g_1, g_2)/2)$.

Then:

- $\tilde{c}_{X^*}(-, -)$ defines a non-trivial class of order 2 in $H^2(Sp(W), \mu_8)$.
- Let $Mp(W)$ denote the associated Metaplectic group.

Metaplectic group

The set:

$$\mathrm{Mp}(W) = \{(g, t) \mid g \in \mathrm{Sp}(W), t \in \mu_8\}.$$

The group law:

$$(g_1, t_1)(g_2, t_2) = (g_1g_2, \tilde{c}_{X^*}(g_1, g_2)t_1t_2).$$

There exists an exact sequence:

$$1 \longrightarrow \mu_8 \longrightarrow \mathrm{Mp}(W) \longrightarrow \mathrm{Sp}(W) \longrightarrow 1.$$

2-cocycle II

Rao and Perrin define:

$$m_{X^*} : \mathrm{Sp}(W) \longrightarrow \mu_8; \quad (1)$$

$$g \longmapsto \gamma(x(g), \psi^{\frac{1}{2}})^{-1} \gamma(\psi^{\frac{1}{2}})^{-j(g)}. \quad (2)$$

$$\bar{c}_{X^*}(g_1, g_2) = m_{X^*}(g_1 g_2)^{-1} m_{X^*}(g_1) m_{X^*}(g_2) \tilde{c}_{X^*}(g_1, g_2). \quad (3)$$

Then:

- \bar{c}_{X^*} defines a 2-cocycle on $\mathrm{Sp}(W)$ with values in μ_2 .

$$\begin{aligned} \bullet \bar{c}_{X^*}(g_1, g_2) &= (x(g_1), x(g_2))_F (-x(g_1)x(g_2), x(g_1g_2))_F \\ &\quad ((-1)^t, \det(2q))_F (-1, -1)_F^{\frac{t(t-1)}{2}} \epsilon(2q). \end{aligned}$$

2-cocycle: Example

Example

If $\dim W = 2$, $Sp(W) \simeq SL_2(F)$. For $g_1, g_2, g_3 = g_1g_2 \in SL_2(F)$ with $g_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}$, we have:

$$(1) x(g_1) = \begin{cases} d_1 F^{\times 2} & \text{if } c_1 = 0 \\ c_1 F^{\times 2} & \text{if } c_1 \neq 0 \end{cases} ;$$

$$(2) \bar{c}_{x^*}(g_1, g_2) = (x(g_1), x(g_2))_F (-x(g_1)x(g_2), x(g_3))_F.$$

Remark

If we take $g_1 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, then

$\bar{c}_{x^*}(g_1, g_2) = (x(g_1), x(g_2))_F = (-1, x(g_2))_F$, which is not continuous on the variable g_2 .

Schrödinger model

By Weil's result, π_ψ can extend to be a unitary representation of $Mp(W) \ltimes H(W)$. The representation π_ψ can be realized on $L^2(X)$ by the following formulas:

$$\pi_\psi[(x, 0) \cdot (x^*, 0) \cdot (0, k)]f(y) = \psi(k + \langle x + y, x^* \rangle)f(x + y), \quad (4)$$

$$\pi_\psi\left[\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, t\right]f(y) = t\psi\left(\frac{1}{2}\langle y, yb \rangle\right)f(y), \quad (5)$$

$$\pi_\psi\left[\begin{pmatrix} a & 0 \\ 0 & a^{*-1} \end{pmatrix}, t\right]f(y) = t|\det(a)|^{1/2}f(ya), \quad (6)$$

$$\pi_\psi([\omega, t])f(y) = t \int_{X^*} \psi(\langle y, y^* \rangle) f(y^* \omega^{-1}) dy^*. \quad (7)$$

Lattice model

If $\psi = \psi_0$, $L = \mathbb{Z}e_1 \oplus \cdots \oplus \mathbb{Z}e_m \oplus \mathbb{Z}e_1^* \oplus \cdots \oplus \mathbb{Z}e_m^*$, we let $\mathcal{H}(L)$ be the space of measurable functions $f : W \rightarrow \mathbb{C}$ such that

- (i) $f(I + w) = \psi\left(-\frac{\langle x_I, x_I^* \rangle}{2} - \frac{\langle I, w \rangle}{2}\right)f(w)$, for all $I = x_I + x_I^* \in L = (L \cap X) \oplus (L \cap X^*)$, almost all $w \in W$;
- (ii) $\int_{L \setminus W} ||f(w)||^2 dw < +\infty$.

Then the Heisenberg representation π_ψ can be realized on $\mathcal{H}(L)$ by the following formulas:

$$\pi_\psi([w', t])f(w) = \psi\left(t + \frac{\langle w, w' \rangle}{2}\right)f(w + w')$$

for $w, w' \in W$, $t \in \mathbb{R}$.

Fock model

If $\psi = \psi_0$, we let \mathcal{H}_F denote the Fock space of holomorphic functions f on \mathbb{C}^m such that

$$\|f\|^2 = \int_{\mathbb{C}^m} |f(w)|^2 e^{-\pi\|w\|^2} d(w) < +\infty.$$

The Heisenberg representation of $H(V)$ associated to ψ can be realized on \mathcal{H}_F by the following formulas:

$$\pi_\psi([w', t])f(w) = \psi(t)e^{-\frac{\pi}{2}\|w'\|^2 - \pi w \overline{w'}^T} f(w + w')$$

for $w, w' \in V \simeq W$, $t \in \mathbb{R}$.

Siegel modular forms

Compare the three standard realizations of the Weil representation—the Schrödinger, lattice and Fock models—and then produce Siegel modular forms. This viewpoint goes back to

G. Mackey, Infinite-dimensional group representations and their applications, C.I.M.E., Edizioni Cremonese, Rome 1971, 221—330.

Example 1

$$(1) \quad \theta(z) \stackrel{\text{Def.}}{=} \sum_{n \in \mathbb{Z}} e^{2\pi i z n^2}.$$

$$(2) \quad \Gamma_0(4)^\kappa \stackrel{\text{Def.}}{=} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \Gamma_\theta \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = \Gamma_0(4) \sqcup \Gamma_0(4) \omega h(2).$$

$$(3) \quad \nu_\theta(r) =$$

$$\begin{cases} \left(\frac{c}{d}\right) \epsilon_d^{-1}, & r = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(4), \\ \left(\frac{c}{d}\right) \epsilon_d^{-1} e^{-\frac{i\pi}{4}} \bar{c}_{X^*}(r, \omega h(2)), & r = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \omega h(2) \in \Gamma_0(4) \omega h(2). \end{cases}$$

Proposition

$$\theta(rz) = \nu_\theta(r) \sqrt{cz + d} \theta(z), \text{ for } r \in \Gamma_0(4)^\kappa.$$

Remark

For $r \in \Gamma_0(4)$, it recovers the classical formula of Shimura; following Lion—Vergne [LiVe], we extend it to the slightly larger group $\Gamma_0(4)^\kappa$.

Example 2

$$(1) \quad \theta'_{1/2}(z) = \sum_{n \in \mathbb{Z}} e^{i\pi(n+\frac{1}{2})^2 z} \quad (\text{fermionic theta function}).$$

$$(2) \quad \nu_{\theta'}(r) =$$

$$\begin{cases} \left(\frac{2c}{d}\right) \epsilon_d^{-1} \left(\frac{-1}{d}\right)^{b/2} i^{b/2}, & r = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(2), \\ \left(\frac{2c}{d}\right) \epsilon_d^{-1} i^{b/2} \left(\frac{-1}{d}\right)^{b/2} e^{\frac{i\pi}{4}}, & r = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in \Gamma(2)u(1). \end{cases}$$

Proposition

$$\theta'^{1/2}(rz) = \nu_{\theta'}(r) \sqrt{cz + d} \theta'^{1/2}(z), \text{ for } r \in \Gamma_0(2).$$

Remark

This means that Zagier's fermionic theta function is a 1/2-modular form for $\Gamma_0(2)$, not merely for $\Gamma(2)$ or $\Gamma_0(4)$.

Thank you for your attention!