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Notation and conventions

F : the usual real field.

ψ: a non-trivial unitary character of F .

(W , ⟨, ⟩): a symplectic vector space of dimension 2m over F .

Sp(W ): the corresponding symplectic group.

µn = {t ∈ C | tn = 1}.
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Heisenberg group

The Heisenberg group H(W ), attached to W and F , is a
topological group W ⊕ F , with the law

(w , t)(w ′, t ′) = (w + w ′, t + t ′ + ⟨w ,w ′⟩
2 )

where w ,w ′ ∈ W , t, t ′ ∈ F .
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Stone-von Neumann’s theorem

Theorem (Stone-von Neumann’s theorem)

There exists a unique (up to isomorphism) unitary irreducible
complex representation of H(W ) with central character ψ.

Let us call it the Heisenberg representation, and denote it by
πψ.
(∗) According to Weil’s work, this representation can be
extended to a projective representation of Sp(W ), and then
to an actual representation of a C×-covering group over
Sp(W ).
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Weil index

Let (Q,V ) be a non-degenerate quadratic vector space on F .

Theorem (André Weil)

There exists a unique root of unity of degree 8, called the Weil
index attached to ψ(Q), denoted by γψ(Q), such that

F(ψ(Q)dv) = γψ(Q)|ρ|−
1
2

F ψ(Q∗)−1dv∗,

for ψ(Q)dv ∈ S∗(V ), and ψ(Q∗)−1dv∗ ∈ S∗(V ∗).

Remark

The Weil index only depends on the Witt class of (Q,V ) and ψ.
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Weil index: Example

F = R.
ψ0(t) = e2πit .

ψ = ψe
0 , for some e ∈ F×.

Example (Rao Prop. A.10)

If V = F and Q(x) = x2, then γψ(Q) = ψ0(
sign e
8 ).

Lemma ([Rao, Def.A.6])

γψ(Q) = ϵ(Q)γ(ψ)dimV γ(detQ, ψ).
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2-cocycle I

W = X ⊕ X ∗: a complete polarization.

Q(g1, g2) = Q(X ∗,X ∗g−1
2 ,X ∗g1): the corresponding Leray

invariant.

Define c̃X∗(g1, g2) = γψ(Q(g1, g2)/2).

Then:

c̃X∗(−,−) defines a non-trivial class of order 2 in
H2(Sp(W ), µ8).

Let Mp(W ) denote the associated Metaplectic group.
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Metaplectic group

The set:

Mp(W ) = {(g , t) | g ∈ Sp(W ), t ∈ µ8}.

The group law:

(g1, t1)(g2, t2) = (g1g2, c̃X∗(g1, g2)t1t2).

There exists an exact sequence:

1 −→ µ8 −→ Mp(W ) −→ Sp(W ) −→ 1.
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2-cocycle II

Rao and Perrin define:

mX∗ : Sp(W ) −→ µ8; (1)

g 7−→ γ(x(g), ψ
1
2 )−1γ(ψ

1
2 )−j(g). (2)

cX∗(g1, g2) = mX∗(g1g2)
−1mX∗(g1)mX∗(g2)c̃X∗(g1, g2). (3)

Then:

cX∗ defines a 2-cocycle on Sp(W ) with values in µ2.

cX∗(g1, g2) = (x(g1), x(g2))F (−x(g1)x(g2), x(g1g2))F

((-1)t , det(2q))F (−1,−1)
t(t−1)

2
F ϵ(2q).
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2-cocycle: Example

Example

If dimW = 2, Sp(W ) ≃ SL2(F ). For g1, g2, g3 = g1g2 ∈ SL2(F )

with gi =

(
ai bi
ci di

)
, we have:

(1)x(g1) =

{
d1F

×2 if c1 = 0
c1F

×2 if c1 ̸= 0
;

(2)cX∗(g1, g2) = (x(g1), x(g2))F (−x(g1)x(g2), x(g3))F .

Remark

If we take g1 =

(
−1 0
0 −1

)
, then

cX∗(g1, g2) = (x(g1), x(g2))F = (−1, x(g2))F , which is not
continuous on the variable g2.
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Schrödinger model

By Weil’s result, πψ can extend to be a unitary representation
of Mp(W )⋉ H(W ). The representation πψ can be realized
on L2(X ) by the following formulas:

πψ[(x , 0) · (x∗, 0) · (0, k)]f (y) = ψ(k + ⟨x + y , x∗⟩)f (x + y), (4)

πψ[

(
1 b
0 1

)
, t]f (y) = tψ(12⟨y , yb⟩)f (y), (5)

πψ[

(
a 0
0 a∗−1

)
, t]f (y) = t| det(a)|1/2f (ya), (6)

πψ([ω, t])f (y) = t

∫
X∗
ψ(⟨y , y∗⟩)f (y∗ω−1)dy∗. (7)
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Lattice model

If ψ = ψ0, L = Ze1 ⊕ · · · ⊕ Zem ⊕ Ze∗1 ⊕ · · · ⊕ Ze∗m, we let
H(L) be the space of measurable functions f : W −→ C such
that

(i)f (l + w) = ψ(− ⟨xl ,x∗l ⟩
2 − ⟨l ,w⟩

2 )f (w), for all
l = xl + x∗l ∈ L = (L ∩ X )⊕ (L ∩ X ∗), almost all w ∈ W ;

(ii)
∫
L\W ||f (w)||2dw < +∞.

Then the Heisenberg representationπψ can be realized on
H(L) by the following formulas:

πψ([w
′, t])f (w) = ψ(t + ⟨w ,w ′⟩

2 )f (w + w ′)

for w ,w ′ ∈ W , t ∈ R.
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Fock model

If ψ = ψ0, we let HF denote the Fock space of holomorphic
functions f on Cm such that

∥f ∥2 =
∫
Cm

| f (w) |2 e−π∥w∥2d(w) < +∞.

The Heisenberg representation of H(V ) associated to ψ can
be realized on HF by the following formulas:

πψ([w
′, t])f (w) = ψ(t)e−

π
2 ∥w

′∥2−πww ′T
f (w + w ′)

for w ,w ′ ∈ V ≃ W , t ∈ R.
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Siegel modular forms

Compare the three standard realizations of the Weil
representation—the Schrödinger, lattice and Fock
models—and then produce Siegel modular forms. This
viewpoint goes back to

G. Mackey, Infinite-dimensional group representations and
their applications, C.I.M.E., Edizioni Cremonese, Rome 1971,
221—330.
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Example 1

(1) θ(z)
Def.
=

∑
n∈Z e

2πizn2 .

(2) Γ0(4)
κ Def.

=

(
2 0
0 1

)−1

Γθ

(
2 0
0 1

)
= Γ0(4) ⊔ Γ0(4)ωh(2).

(3) νθ(r) =
(
c
d

)
ϵ−1
d , r =

(
a b
c d

)
∈ Γ0(4),(

c
d

)
ϵ−1
d e−

iπ
4 cX∗(r , ωh(2)), r =

(
a b
c d

)
ωh(2) ∈ Γ0(4)ωh(2).
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Proposition

θ(rz) = νθ(r)
√
cz + dθ(z), for r ∈ Γ0(4)

κ.

Remark

For r ∈ Γ0(4), it recovers the classical formula of Shimura;
following Lion—Vergne [LiVe], we extend it to the slightly larger
group Γ0(4)

κ.
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Example 2

(1) θ′1/2(z) =
∑

n∈Z e
iπ(n+

1
2)

2z (fermionic theta function).

(2) νθ′(r) =
(
2c
d

)
ϵ−1
d (−1

d )b/2ib/2, r =

(
a b
c d

)
∈ Γ(2),(

2c
d

)
ϵ−1
d ib/2(−1

d )b/2e
iπ
4 , r =

(
a b
c d

)(
1 1
0 1

)
∈ Γ(2)u(1).
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Proposition

θ
′1/2(rz) = νθ′(r)

√
cz + dθ

′1/2(z), for r ∈ Γ0(2).

Remark

This means that Zagier’s fermionic theta function is a 1/2-modular
form for Γ0(2), not merely for Γ(2) or Γ0(4).
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Thank you for your attention!
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