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Some personal recollections of ALGANT-math

>1980’s: algorithms & computations in number theory

» factoring integers: quadratic sieve, elliptic curves
e point counting on elliptic curves over finite fields
* computation of units and class groups

* determining rational points on curves of genus

Public key cryptography stimulated this development.



>1990’s: computer algebra systems:
GP-Pari, Maple, Mathematica, GAP, Magma, SAGE, ...

Collection of data:
curves with many points, exotic class groups, ...

Public data bases: LMFDB

Conjectures more often based on numerical experimentation.



Example: Cohen-Lenstra heuristics (1983)

Earliest large class group computations: quadratic fields.
Oldest example: Gauss (Disquisitiones Arithmeticae).

ForD e Z, D = 0,1 mod 4 not a square:

G = Gy = (form) class group of discriminant D
= SL,(Z)\F

with &, = set of primitive integral binary quadratic forms
aX? + bXY + ¢Y? of discriminant D = b? — 4ac.



G is actually the (narrow) class group of the order
6, = ZI(D ++/D)/2].
Behaviour for D > 0 and D < 0 is quite different.
Today: take D fundamental, i.e., D = diSC(Q(\/B)).
Numerical observations:
« the odd part of G is rarely non-cyclic
« If D < 0then 3 divides #G for 43% of all discriminants

« (G vanishes for 76% of (positive) prime discriminants
p =1 mod 4.

These observations are still unproved!



Cohen-Lenstra’s heuristic "explanation’

for D < 0, the odd part of G is a random abelian group’ of
odd order, which occurs with weight 1/#Aut(G).

Example: we have #GL,(F ) = (p* — 1) - #(Z/p*Z)*, so the
group Z/p?*Z is p* — 1 times more likely than Z/pZ x Z/pZ.

For D > 0, the odd part of G is a random abelian group of
odd order modulo a random cyclic subgroup’.

This simple framework yields very precise predictions.



Arithmetic Statistics

With the advent of computer power, we can “compute”
arithmetical objects in large numbers, and access them via
data bases.

Answers to natural questions about average behaviour can be
found empirically, explained heuristically, and in some cases
be proved.

Philosophy: objects are randomly distributed while obeying all
rules that our theorems force upon them.
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The Pell equation

For a positive non-square integer d, the equation
x*—dy* =1

has no clear relation to John Pell (1611-1685), who was
involved in in the 1668 English edition of the Swiss
mathematician Johann Rahn’s Teutsche Algebra (1659).

Its popularity is partly due to Fermat (1607-1665),
who asked for integer solutions x,y € Z_,in 1657.
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334 (EUVRES DE FERMAT. — CORRESPONDANCE.

Exemple : 3 est un nombre non quarré, lequel multiplié par 1, qui
est quarre, fait 3 et, en prenant l'unité, fait 4, qui est quarre.

Le méme 3, multiplié par 16, qui est quarré, fait 48 et, en prenant
"unite, fait 49, qui est quarre.

Il v en a infinis qui, multipliant 3, en prenant I'unité, font pareil-
lement un nombre quarré.

Je vous demande une regle générale pour, étant donné un nombre
non quarre, trouver des quarrés qui, multipliés par le dit nombre
donné, en ajoutant 'unite, fassent des nombres quarres.

Quel est, par exemple, le plus petit quarré qui, multipliant 61, en
prenant I'unité, fasse un quarré?

[tem, quel est le plus petit quarré qui, multipliant rog et prenant
["unité, fasse un quarré?

Si vous ne m’envoyez pas la solution générale, envoyez-moi la par-
ticuliere de ces deux nombres que jai choisis des plus petits, pour ne
vous donner pas trop de peine.

Apres que jaurai recu votre réponse, je vous proposerai quelque
autre chose. Il paroit, sans le dire, que ma proposition n’est que pour
trouver des nombres entiers, qui satisfassent a la question, car, en cas

de fractions, le moindre avithméticien en viendroit 2 bout.

3-17+1
3.424+1
3y + 1

61y% + 1
109y% + 1

=x%?
= x% ?



Integral versus rational solutions

The Pell equation
x*—dy*=1
describes a conic in the plane passing through the point (1,0).
Intersecting the hyperbola with the line
y=Ax—-1)
with rational slope A yields a quadratic equation in x having roots
x=1 and x=(dA*+ 1)/(dA*-1).
We can parametrize all rational solutions as

d\?+1 24
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Pour ne pas vous donner trop de peine....

The smallest solutions Fermat asks for are

d=61: x=1766319049, y =226 153980
d=109: x =158070671986249, y = 15140424 455100.

The size of the smallest solution does not grow regularly with d :

d=110: x=21,y="2.



How to communicate this to your English colleagues?

LX XX
SECOND DEFI DE FERMAT AUX MATHEMATICIENS (').

rEVRIER 1657.

(1) Celte piece, qui pose le méme probleme que la Lettre précédente LXXX a Fre-
nicle, fut recue par Brouncker, de la part de Digby et par l'intermédiaire de Thomas

While. en mars 1657.

Qu:estiones pure arithmeticas vix est qui proponat, vix qui intel-
ligat. Annon quia Arithmetica fuit hactenus tractata geometrice potius
quam arithmetice? Id sane innuunt pleraque et Veterum et Recen-
tiorum voluminas; innuit et ipse Diophantus (). Qui licet a Geometria
paulo magis quam cateri discesserit, dum Analyticen numeris tantum
rationalibus adstringit, eam tamen partem Geometria non omnino
vacare probant satis superque Zetetica Vietza, in quibus Diophanti
methodus ad quantitatem continuam, ideoque ad Geometriam porri-

agitur.



Doctrinam itaque de numeris integris tanquam peculiare sibi ven-
dicat Arithmetica patrimonium; eam, apud Euclidem leviter duntaxat
in Elementis adumbratam, ab iis autem qui secuti sunt non satis
excultam (nisi forte in iis Diophanti libris, quos injuria temporis
abstulit, delitescat), aut promovere studeant "Agtfunzizey wuices aul
renovare.

Quibus, ut praeviam lucem praferamus, theorema seu problema
sequens aut demonstrandum aut construendum proponimus; hoe
autem si invenerint, fatebuntur hujusmodi quastiones nec subtili-
tate, nec difficultate, nee ratione demonstrandi, celebrioribus ex

Geometria esse inferiores :

Dato quovis numero non quadrato, dantur infiniti quadrati qui, in

datum numerum ducti, adscitd unitate conficiant quadratum.

Exemplum. — Datur 3, numerus non quadratus; ille, ductus in
quadratum 1, adscita unitate conficit 4, qui est quadratus.

Item idem 3, ductus in quadratum 16, adseita unitate facit 4o qui
est quadratus.

Et, loco 1 et 16, possunt infiniti quadrati idem prastantes inveniri;
sed canonem gencralem, dato quovis numero non quadrato, inqui-
rimus.

Queratur, verbi gratia, quadratus qui, ductus in 149, aut 1og, aul
433, ete., adscita unitate conficiat quadratum.



Many people solved special cases of the equation.

Big solutions yield good rational approximations x/y =~ \/;l
- d =2, 3: ancient sources — Indians, Pythagoreans, ...

- Diophantus (250 AD) solved various quadratic equations

- Brahmagupta (628 AD) composed solutions
- d = 61: solved by Bhaskara Il (1114-1185)

- 17th century: Fermat, Brouncker, Wallis, ...

« Euler (1765) gave a lucid exposition of what is now called the
continued fraction method to solve the equation.

- Lagrange (1773) was the first to publish a proof that the method
always finds a solution for non-square d € Z.,.



Why Pell?

Euler (1707-1783) wrote a very influential textbook on Algebra.
It set the standard for much of our modern notation.

Euler spends a chapter (13 pages) in the book on solving the Pell
equation, more than a century after Fermat’s challenge.

Yo

$Hiersu at vormals ein gelehreer Englander, Na.
mens Pell, eine gany finnreiche IMethobe erfunden,
weldye wir Hier erflaren wollen.  Diefelbe aber ift
nidyt fo befhaffen, daf fie auf eine allgemeine Are fir
eine jegltidhe Sabl a, fonbern nur filr einen jeglicdhen
Gall befonbers gebraudyt rerden Fann,

—



Problema bovinum (cattle problem)
Discovered by Lessing in 1773.
Credited to Archimedes.

Leads to the Pell equation for
d=410286423278424
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PROBLEM

that Archimedes conceived in verse
and posed to the specialists at Alexandria
in a letter to Eratosthenes of Cyrene.

The Sun god S cattie frienci dppiy tiriy care

to count their numi)er hast tilou wisdom's share.
Tiiey grazed of old on tiie Thrinacian floor

of Sic’iy’s 1sianci, herded into four,

colour i)y colour: one herd white as cream,

the next in coats giowing with ebon giea.m,

brown-skinned the tiiir(i, and stained with spots the last

Each herd saw bulls in power unsurpassed,

in ratios these: count half the ei)on-ime(i,

add one third more, then all the brown inciucie;

tiius, frienci, canst thou the white bulls’ number tell.

The ebon did the brown exceed as weii,

now i)y a fourth and fifth part of the stained.

To know the spotteci—aii bulls that remained —

reckon again the brown buiis, and unite

these with a sixth and seventh of the white.

Arnong the COWS, the tale of silver-haired

was, when with bulls and cows of black compared,

exactiy one in three pius one in four.

The black cows counted one in four once more,

pius now a iilc’cii, of the bespeci(ieci breed

wiien, bulls witiia.i, tiiey wandered out to feed.

The speci(ie(i cows tallied a fifth and sixth

of all the brown-iiaireci, males and females mixed.

Lastiy, the brown cows numbered half a third

and one in seven of the silver herd.

Tell'st thou unfaiiingi how many head

the Sun possessed, [¢) gienci, both bulls well-fed

and cows of ev7ry colour — no-one will

(icny that thou hast numbers’ art and si<iii,

tiiougii not yet dost thou rank among the wise.

But come! also the foii’wing recognise.

Whene'er the Sun god’s white bulls joine(i the i)iaci(,

their multitude would gatiier in a pack

of equa,i iengtii and i)lr)ea.citii and squareiy tiuong
rinacia’s territory broad and long

But when the brown bulls mmgieci w1tii the ﬂeci(eci

in rows growing from one would tiley coiiect

forming a perfect triangie, with ne’er

a diff rent-coloured i)uii, and none to spare.

Friemi, canst thou anaiyse this in tiiy mimi,

and of these masses all the measures ﬁnd,

go forth in giory! be assured all deem

tiiy wisdom in this discipline supremei



Continued fraction method (d = 14)

J14=3+ 11
1 + |
2+1 1 34414 =[6,1,2,1]
_|_
3+ 414
3 : _ b ~ /14 152 —-14-4%?=1
] 4
1 1 x=15,y=4




Algebraic number theory
x> —dy' =1 = (x+y\/;l)(x—y\/2l) =1
We recognise the normmap N : Z[\/Z’] — 7
on the quadratic order Z[\/c_z’], which maps units to Z* = {*1}.
The units x + y\/c_z’ S Z[\/c_i]* correspond to the solutions of
x?—dy*==+1
Dirichlet unit theorem: Z[\/;l]>I< ={x£1} X {(x+ y\/Zl)

All units in the order Z[\/c_l] are — up to sign — powers of a single
fundamental unit x + y\/;l : we have x, + yn\/gl = (x + y\/;l )"



The order Z[\/Zl] may not be the maximal order 0 in Q(\/ZZ).
For p = 1 mod 4 prime we have 0, = Z[(1 + \/]3)/2] with

fundamental unit of norm —1:

6
39 + 54/61
( 5 ) = 1766319049 + 226 1539804/61
6
261 + 254/109
( > > = 158 070671986249 + 15 140424 4551004/ 109

This is not the cause of the ‘exponential size’ of the solutions as a
function of the input parameter d.



Arithmetic statistics question (still open...)_

Fermat found primes p = 61, 109, 149, ... for which it takes large
positive y to make 1 + py? into a square.

For primes p = 1 mod 4, the fundamental unit e, € 0, = Z[(1 + \/13)/2]
has norm —1, as does ¢, € O,, = Z[/p].

2 — py? =1 equals

2
e, whene, € 0,

The fundamental solution to x

X+ Y\ /P =

For which fraction of p = 1 mod 4 are we in Fermat’s “second case”?

o NS

g, else.

S



Negative Pell question

For how many non-squares d > 0 is the negative Pell equation
x> —dy*=—-1
solvable?
The continued fraction method does give a criterion: this happens if

and only if the continued fraction for \/;l has odd period length.
But how often will that happen?

2 —

For primes p | d, the congruence x — 1 mod p results.

Necessary condition: no prime p = 3 mod 4 divides d.



Solvability of negative Pell is rare
D={deZ_,:nop=3mod 4 divides d}
deD < x*—dy?>= —1issolvable in rational x and y

Integers d € Z. not divisible by primes p = 3 mod 4 form a thin
subset of all integers.

X
#{deD:d< X} ~c-
\/1log X

with the explicit value

But how often will there be integral solutions?



A Fermat-like proof

x> — py* = — 1 is solvable for all primes p = 1 mod 4

Proof. Suppose x> — py? = 1 is the fundamental solution.

As x is odd and y is even, we can write

x+1 x—-1 y2
2 » P\2 )

Two positive coprime integers at distance 1 with product p - are
of the form a? and pb?, so a® — pb* = — 1.

So at least negative Pell is solvable for infinitely many d...



For now: restrict to squarefree d € Z.,,.
D~ =1{d € L. : d squarefree, x> — dy* = — 1 is solvable}
9D ={d e Z.: dsquarefree, no p|d primeis 3 mod 4}
Question: what is the probability for ‘random’ d € & to be in 97?

4D
X D P = S
#P<x AD
104 1138 .860
10° 10210 832
10° 93422 .816
107 866200 .799

Any guesses for a limit value for X — oc0?



Stevenhagen’s conjecture (1992)
The limit value exists and is equal to

#— |
S= lim —X =1 - H (1 —27) ~ .580577 5582
X—)OO #@<X

= j>1 odd

This has now been proved by Koymans and Pagano.

It cannot be directly observed’ from tabulated numerical data.

* Why this number?

 Why doesn’t it show from the data?

* What goes into proving this?



Solvability of negative Pell
Units are intimately related to class groups.

The sign of the norm of the fundamental unit in O = Z[\/;l] determines

the difference between the ordinary and the narrow class group of O:
1 - ((/d)]) = CI*(O) - Cl(6) — 1.
Theidealclass F, = F ; = [(\/;Z)] in C17(0) has order 1 or 2.

It “is” the Frobenius at infinity for the narrow ring class field of O.
Negative Pell is solvable ford < F_ =1

F__ lives in the 2-part of C17(0), which is not exactly ‘random’.



Genus theory

For d = p,p,ps+-p, @ product of 1 primes not congruent to 3 mod 4
CIH(0)[2] = (Z/2Z)"!
Given € € R, ;, almost all integers n > 0 have the property that its
number w(n) of distinct prime divisors satisfies
(1 —e)loglogn < w(n) < (1 + €)loglogn.

So with increasing d, we would expect F,, = 1 to happen with
decreasing probability if F_, € C17(0)[2] were a random element.

Apparently it is not a random element....



The 4-rank of CI11(0) [LészI6 Rédei (1900-1980)]

For our d € 9, the Frobenius at infinity F'_ is always contained in the
kernel of the natural map

C1*(0)[2] — CIT(0O)/CIT(6)>.

This kernel is an F,-vector space of dimension equal to the 4-rank
e,(C17(0)) of the narrow class group C1*(0).

Ford = p\p,p3*Py

CI1*(0)[2] has t canonical generators (with 1 relation)
CI*(0)/CI*(0)* is a subgroup of index 2 in Gal(G/Q) = F,.

So our map can be described in terms of a f X f-matrix over F,.



The Rédei matrix
R, : F, » CI*(0)[2] — CI*(0)/CI*(0)* C F},
Rédei’s theorem (1934):
ey(CI7(0)) = dimp kerRy— 1 =¢—1—dimg im R,
Foru =(1)_, € F, wehave u+ [(\/c_l)] = F_ € CIT(0)[2].
Remember:

Negative Pell is solvable ford < F_ =1

“Negative Pell is solvable” now translates as
ker R, » CI*(0)[2] n CIT(0)* has kernel F, - u.

A random w # 0 in ker R, generates the kernel with probability petl _ 1.



Heuristic underlying the conjecture

If O = Z[\/c_z’ | has narrow class group C17(0) of 4-rank e, then we
expect Negative Pell for d to be solvable with probability (2¢T!1 — 1)~1.

The 4-rank e is determined by the corank of the Rédei matrix for O.

Ford € 9, this is essentially a symmetric (f — 1) X ( — 1) matrix over F,.

Fixing t = w(d), the Rédei matrix “is” random symmetric.
(1

It has corank e with some probability p, , € Q. Put §, = 2
e=0

Conjectural constant: § = lim S, = 1 — H (1 —27).
e j>1 0dd

Pe.
Je+l _ 1




Three decades towards a proof

Rédei matrices of maximal rank t — 1 = w(d) — 1 are frequent.

For t — oo they make up a fraction [] (1 — 277Y of all matrices.
j>1odd

In this case (e = 0) our heuiristic is a well known theorem. It yields
lower bounds on #&,(X) for fixed ¢t (Cremona-Odoni, 1989).

Fouvry & Kluners (2010)
.. DXy . 97X)
lim lIim = lim
=00 X—00 gt(X) X—o0 QZ(X)

Alexander Smith (2017 —..) proved Cohen—Lenstra for the 2-Sylow
part of imaginary quadratic class groups.
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On Stevenhagen’s conjecture

Peter Koymans*! and Carlo Pagano'?

1University of Michigan
2University of Glasgow

February 1, 2022

Abstract

We generalize a classical reciprocity law due to Rédei [39] using our recently developed
description of the 2-torsion of class groups of multiquadratic fields [28]. This result is then
used to prove a variety of new reflection principles for class groups, one of which involves
a symbol similar to the spin symbol as defined in work of Friedlander, Iwaniec, Mazur
and Rubin [20]. We combine these reflection principles with Smith’s techniques [42] to
prove Stevenhagen’s conjecture [43] on the solubility of the negative Pell equation.

1 Introduction

Integral points on conics are a classical topic of study going back to at least the ancient
Greeks. For fixed squarefree d > 0, the equation

z? — dy? =1 to be solved in z,y € Z



What’s next?

The “easier” case of fixed t = w(d) has remained open.
For primes p, g = 1 mod 4 the equation

x> —pqy* = —1

should be solvable for a fraction 2/3 of all d = pgq.

What about the non-squarefree case? Can we also determine
. D7(X)
Iim
X—o0 D(X)

for D={d € Z.,:nop=3mod 4 divides d}?



Recall:

3 X
#HldeD:d< X} ~— H (1—p 2.

2 p=1mod4 \/@(

The subset D~ C D of those d for which x> — dy? = — 1 is solvable
should also have a density!

Conjecture (JTNB 7, 1995)

D (X 1
lim 2% _ IT a+ ";(p) (1 ——) ~ 57339
A= 00 D(X) p=1mod4 P -1 P
with
2 4 (1 4 21ordalp=Dlyy,
w(p) = :

2(p+1)



Thank you!



)= T (1+¢;f)+¢;f)+¢sz)+...)

P prime

= [] a+ plf(f)l).

P prime
pP=1mod4



