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Some personal recollections of ALGANT-math 

1980’s: algorithms & computations in number theory


• factoring integers: quadratic sieve, elliptic curves

• point counting on elliptic curves over finite fields

• computation of units and class groups 

• determining rational points on curves of genus


Public key cryptography stimulated this development.


≥



1990’s: computer algebra systems:

GP-Pari, Maple, Mathematica, GAP, Magma, SAGE, … 


Collection of data: 

curves with many points, exotic class groups, …


Public data bases: LMFDB 


Conjectures more often based on numerical experimentation.


≥



Example: Cohen-Lenstra heuristics (1983) 

Earliest large class group computations: quadratic fields.

Oldest example: Gauss (Disquisitiones Arithmeticae).


For  not a square: 

	 (form) class group of discriminant 		 	 	
	 	 	 	 

with set of primitive integral binary quadratic forms 


 of discriminant .


D ∈ Z, D ≡ 0,1 mod 4
G = GD = D

= SL2(Z)∖ℱD

ℱD =
aX2 + bXY + cY2 D = b2 − 4ac



 is actually the (narrow) class group of the order 

.


Behaviour for  and  is quite different.


Today:  take  fundamental, i.e., .

Numerical observations: 

• the odd part of  is rarely non-cyclic


• If  then 3 divides  for 43% of all discriminants 


•  vanishes for 76% of (positive) prime discriminants 
.


These observations are still unproved! 

G
𝒪D = Z[(D + D)/2]

D > 0 D < 0
D D = disc(Q( D))

G
D < 0 #G

G
p ≡ 1 mod 4



Cohen-Lenstra’s heuristic `explanation’


for ,  the odd part of  is a `random abelian group’ of 
odd order, which occurs with weight .


Example: we have , so the 

group  is  times more likely than .


For ,   the odd part of  is a `random abelian group of 
odd order modulo a random cyclic subgroup’.


This simple framework yields very precise predictions. 

D < 0 G
1/#Aut(G)

#GL2(Fp) = (p2 − 1) ⋅ #(Z/p2Z)*
Z/p2Z p2 − 1 Z/pZ × Z/pZ

D > 0 G



Arithmetic Statistics 

With the advent of computer power, we can “compute” 
arithmetical objects in large numbers, and access them via 
data bases.


Answers to natural questions about average behaviour can be 
found empirically, explained heuristically, and in some cases 
be proved.


Philosophy: objects are randomly distributed while obeying all 
rules that our theorems force upon them. 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The Pell equation 

For a positive non-square integer , the equation 





has no clear relation to John Pell (1611-1685), who was 
involved in in the 1668 English edition of the Swiss 
mathematician Johann Rahn’s Teutsche Algebra (1659). 

Its popularity is partly due to Fermat (1607–1665), 
who asked for integer solutions  in 1657. 

d

x2 − dy2 = 1

x, y ∈ Z>0





 d ∈ Z>0, d ≠ □ ⟹ d ⋅ □ + 1 = □



	 	
 
 

    

  
 

3 ⋅ 12 + 1 = 22

3 ⋅ 42 + 1 = 72

3y2 + 1 = x2

61y2 + 1 = x2 ?
109y2 + 1 = x2 ?



Integral versus rational solutions 

The Pell equation  


 

describes a conic in the plane passing through the point (1,0).

Intersecting the hyperbola with the line 





with rational slope  yields a quadratic equation in  having roots

   and   .


We can parametrize all rational solutions as


,     . 

x2 − dy2 = 1

y = λ(x − 1)
λ x

x = 1 x = (dλ2 + 1)/(dλ2 − 1)

(x, y) = ( dλ2 + 1
dλ2 − 1

,
2λ

dλ2 − 1 ) λ ∈ Q



Pour ne pas vous donner trop de peine…. 

The smallest solutions Fermat asks for are  

 
. 

The size of the smallest solution does not grow regularly with  : 

. 

d = 61: x = 1766 319049, y = 226 153980
d = 109: x = 158 070671 986249, y = 15 140424 455100

d

d = 110: x = 21, y = 2



How to communicate this to your English colleagues? 
 








Many people solved special cases of the equation.


Big solutions yield good rational approximations  .


• ancient sources — Indians, Pythagoreans, …


• Diophantus (250 AD) solved various quadratic equations


• Brahmagupta (628 AD) composed solutions


• solved by Bhaskara II (1114–1185) 

• 17th century: Fermat, Brouncker, Wallis, …


• Euler (1765) gave a lucid exposition of what is now called the 
continued fraction method to solve the equation.


• Lagrange (1773) was the first to publish a proof that the method 
always finds a solution for non-square . 

x /y ≈ d

d = 2, 3 :

d = 61:

d ∈ Z>0



Why Pell? 

Euler (1707–1783) wrote a very influential textbook on Algebra.

It set the standard for much of our modern notation.

Euler spends a chapter (13 pages) in the book on solving the Pell 
equation, more than a century after Fermat’s challenge.  



Problema bovinum (cattle problem) 
Discovered by Lessing in 1773.

Credited to Archimedes.

Leads to the Pell equation for  

 d = 410 286423 278424



Continued fraction method ( ) 
   

         

 

             

                           

d = 14

3 + 14 = [6,1,2,1]

≈ 14 152 − 14 ⋅ 42 = 1

x = 15, y = 4



Algebraic number theory 

 

We recognise the norm map      


on the quadratic order , which maps units to .


The units  correspond to the solutions of 





Dirichlet unit theorem:   


All units in the order  are — up to sign — powers of a single 
fundamental unit : we have .


x2 − dy2 = 1 ⟺ (x + y d)(x − y d) = 1

N : Z[ d] → Z

Z[ d] Z* = {±1}

x + y d ∈ Z[ d]*

x2 − dy2 = ± 1

Z[ d]* = {±1} × ⟨x + y d⟩

Z[ d]
x + y d xn + yn d = (x + y d)n



The order  may not be the maximal order  in .


For  prime we have  with 
fundamental unit of norm :








This is not the cause of the `exponential size’ of the solutions as a 
function of the input parameter . 

Z[ d] 𝒪d Q( d)
p ≡ 1 mod 4 𝒪p = Z[(1 + p)/2]

−1

( 39 + 5 61
2 )

6

= 1766 319049 + 226 153980 61

(
261 + 25 109

2 )
6

= 158 070671 986249 + 15 140424 455100 109

d



Arithmetic statistics question (still open…)_ 
Fermat found primes   for which it takes large 
positive  to make  into a square.


For primes , the fundamental unit  

has norm , as does . 


 
The fundamental solution to  equals





For which fraction of  are we in Fermat’s “second case”? 

p = 61, 109, 149, …
y 1 + py2

p ≡ 1 mod 4 εp ∈ 𝒪p = Z[(1 + p)/2]

−1 ε4p ∈ 𝒪4p = Z[ p]

x2 − py2 = 1

x + y p = {
ε2

p when εp ∈ 𝒪4p

ε6
p else.

p ≡ 1 mod 4



Negative Pell question 
For how many non-squares  is the negative Pell equation 




solvable?

The continued fraction method does give a criterion: this happens if 
and only if the continued fraction for  has odd period length.  
But how often will that happen?


For primes , the congruence  results.


Necessary condition: no prime  divides .


d > 0
x2 − dy2 = − 1

d

p |d x2 ≡ − 1 mod p
p ≡ 3 mod 4 d



Solvability of negative Pell is rare 



 is solvable in rational 


Integers  not divisible by primes  form a thin 
subset of all integers.





with the explicit value


.


 But how often will there be integral solutions?


D = {d ∈ Z>0 : no p ≡ 3 mod 4 divides d}
d ∈ D ⟺ x2 − dy2 = − 1 x and y

d ∈ Z>0 p ≡ 3 mod 4

#{d ∈ D : d ≤ X} ∼ c ⋅
X

log X

c =
3

2π ∏
p≡1mod4

(1 − p−2)1/2



A Fermat-like proof 

  is solvable for all primes 


Proof. Suppose  is the fundamental solution.  
As  is odd and  is even, we can write


.


Two positive coprime integers at distance 1 with product  are 
of the form  and , so .


So at least negative Pell is solvable for infinitely many …


x2 − py2 = − 1 p ≡ 1 mod 4

x2 − py2 = 1
x y

x + 1
2

⋅
x − 1

2
= p ( y

2 )
2

p ⋅ □
a2 pb2 a2 − pb2 = − 1

d



For now: restrict to squarefree .








Question: what is the probability for `random’  to be in ?


Any guesses for a limit value for ? 

d ∈ Z>0

𝒟− = {d ∈ Z>0 : d squarefree, x2 − dy2 = − 1 is solvable}
𝒟 = {d ∈ Z>0 : d squarefree, no p |d prime is 3 mod 4}

d ∈ 𝒟 𝒟−

X → ∞



Stevenhagen’s conjecture (1992) 
The limit value exists and is equal to 




This has now been proved by Koymans and Pagano.


It cannot be directly `observed’ from tabulated numerical data.


• Why this number?


• Why doesn’t it show from the data?


• What goes into proving this? 

S = lim
X→∞

#𝒟−
≤X

#𝒟≤X
= 1 − ∏

j≥1 odd
(1 − 2−j) ≈ .580577 5582



Solvability of negative Pell 
Units are intimately related to class groups.


The sign of the norm of the fundamental unit in  determines 
the difference between the ordinary and the narrow class group of :


.


The ideal class  in  has order 1 or 2.


It “is” the Frobenius at infinity for the narrow ring class field of .


Negative Pell is solvable for  


 lives in the 2-part of , which is not exactly `random’. 

𝒪 = Z[ d]
𝒪

1 → ⟨[( d)]⟩ → Cl+(𝒪) → Cl(𝒪) → 1

F∞ = F∞,d = [( d)] Cl+(𝒪)

𝒪

d ⟺ F∞ = 1

F∞ Cl+(𝒪)



Genus theory 
For  a product of  primes not congruent to 





Given ,  almost all integers   have the property that its 
number  of distinct prime divisors satisfies


.


So with increasing , we would expect  to happen with 
decreasing probability if  were a random element.


Apparently it is not a random element…. 

d = p1p2p3⋯pt t 3 mod 4

Cl+(𝒪)[2] ≅ (Z/2Z)t−1

ϵ ∈ R>0 n > 0
ω(n)

(1 − ϵ)log log n < ω(n) < (1 + ϵ)log log n

d F∞ = 1
F∞ ∈ Cl+(𝒪)[2]



The 4-rank of                        [László Rédei (1900–1980)] 

For our , the Frobenius at infinity  is always contained in the 
kernel of the natural map 


.


This kernel is an -vector space of dimension equal to the 4-rank  
 of the narrow class group .


For ,


•  has  canonical generators (with 1 relation)


•  is a subgroup of index 2 in .


So our map can be described in terms of a -matrix over . 

Cl+(𝒪)
d ∈ 𝒟 F∞

Cl+(𝒪)[2] ⟶ Cl+(𝒪)/Cl+(𝒪)2

F2

e4(Cl+(𝒪)) Cl+(𝒪)

d = p1p2p3⋯pt

Cl+(𝒪)[2] t

Cl+(𝒪)/Cl+(𝒪)2 Gal(G/Q) ≅ Ft
2

t × t F2



The Rédei matrix 





Rédei’s theorem (1934): 

. 

For    we have   .


Remember:


Negative Pell is solvable for  


“Negative Pell is solvable” now translates as


.


A random  in  generates the kernel with probability . 

R4 : Ft
2 ↠ Cl+(𝒪)[2] ⟶ Cl+(𝒪)/Cl+(𝒪)2 ⊂ Ft

2

e4(Cl+(𝒪)) = dimF2
ker R4 − 1 = t − 1 − dimF2

im R4

u = (1)t
i=1 ∈ Ft

2 u ↦ [( d)] = F∞ ∈ Cl+(𝒪)[2]

d ⟺ F∞ = 1

ker R4 ↠ Cl+(𝒪)[2] ∩ Cl+(𝒪)2  has kernel  F2 ⋅ u

w ≠ 0 ker R4 2e4+1 − 1



Heuristic underlying the conjecture 
If  has narrow class group  of 4-rank , then we 
expect Negative Pell for d to be solvable with probability .


The 4-rank  is determined by the corank of the Rédei matrix for .


For , this is essentially a symmetric  matrix over .


Fixing , the Rédei matrix “is” random symmetric.


It has corank  with some probability . Put .


Conjectural constant: . 

𝒪 = Z[ d] Cl+(𝒪) e
(2e+1 − 1)−1

e 𝒪

d ∈ 𝒟 (t − 1) × (t − 1) F2

t = ω(d)

e pe,t ∈ Q St =
t−1

∑
e=0

pe,t

2e+1 − 1

S = lim
t→∞

St = 1 − ∏
j≥1 odd

(1 − 2−j)



Three decades towards a proof 
Rédei matrices of maximal rank  are frequent.


For  they make up a fraction   of all matrices.


In this case  our heuristic is a well known theorem. It yields 
lower bounds on  for fixed  (Cremona-Odoni, 1989).


Fouvry & Klüners (2010)





Alexander Smith (2017—..) proved Cohen—Lenstra for the 2-Sylow 
part of imaginary quadratic class groups. 

t − 1 = ω(d) − 1

t → ∞ ∏
j≥1 odd

(1 − 2−j)

(e = 0)
#𝒟−

t (X ) t

lim
t→∞

lim
X→∞

𝒟−
t (X )

𝒟t(X )
= lim

X→∞

𝒟−(X )
𝒟(X )





What’s next? 
The “easier” case of fixed  has remained open.


For primes  the equation 


 


should be solvable for a fraction 2/3 of all .


What about the non-squarefree case? Can we also determine





for   ? 

t = ω(d)

p, q ≡ 1 mod 4

x2 − pqy2 = − 1

d = pq

lim
X→∞

D−(X )
D(X )

D = {d ∈ Z>0 : no p ≡ 3 mod 4 divides d}



Recall:





The subset  of those  for which  is solvable 
should also have a density!


Conjecture (JTNB 7, 1995) 

 

with


. 

#{d ∈ D : d ≤ X} ∼
3

2π ∏
p≡1mod4

(1 − p−2)1/2 ⋅
X

log X

D− ⊂ D d x2 − dy2 = − 1

lim
X→∞

D−(X )
D(X )

= S ⋅ ∏
p≡1mod4

(1 +
ψ(p)

p2 − 1
)(1 −

1
p2

) ≈ .57339

ψ(p) =
2 + (1 + 21−ord2(p−1))p

2(p + 1)



Thank you! 




