

A survey on cohomological obstructions

TIAN Yisheng

*Algant master program alumni
Essen 2015-2016 and Orsay 2016-2017*

27th December 2025

Philosophy

Throughout, we are interested in solving polynomial equations with coefficients in \mathbb{Z} , \mathbb{Q} , etc.

Throughout, we are interested in solving polynomial equations with coefficients in \mathbb{Z} , \mathbb{Q} , etc. A basic observation is a 1-1 correspondence

- (1) solutions of (say) $xy = 1$ in \mathbb{Q} (rat. solutions),

Throughout, we are interested in solving polynomial equations with coefficients in \mathbb{Z} , \mathbb{Q} , etc. A basic observation is a 1-1 correspondence

- (1) solutions of (say) $xy = 1$ in \mathbb{Q} (rat. solutions),
- (2) \mathbb{Q} -points on $X = \text{Spec } \mathbb{Z}[X, Y]/(XY - 1)$ (rat. points).

Throughout, we are interested in solving polynomial equations with coefficients in \mathbb{Z} , \mathbb{Q} , etc. A basic observation is a 1-1 correspondence

- (1) solutions of (say) $xy = 1$ in \mathbb{Q} (rat. solutions),
- (2) \mathbb{Q} -points on $X = \text{Spec } \mathbb{Z}[X, Y]/(XY - 1)$ (rat. points).

In other words, rational solutions of equations correspond bijectively to rational points on the geometric object defined by those equations.

Philosophy

- (1) If $X(\mathbb{Q}) \neq \emptyset$, then $X(\mathbb{R}) \neq \emptyset$ and $X(\mathbb{Q}_p) \neq \emptyset$.
- (2) Conversely, does $X(\mathbb{Q}_v) \neq \emptyset$ imply $X(\mathbb{Q}) \neq \emptyset$?

- (1) If $X(\mathbb{Q}) \neq \emptyset$, then $X(\mathbb{R}) \neq \emptyset$ and $X(\mathbb{Q}_p) \neq \emptyset$.
- (2) Conversely, does $X(\mathbb{Q}_v) \neq \emptyset$ imply $X(\mathbb{Q}) \neq \emptyset$?
- (3) Positive answer: if X is defined by homogenous quadratic forms, then the above holds (Hasse–Minkowski).

- (1) If $X(\mathbb{Q}) \neq \emptyset$, then $X(\mathbb{R}) \neq \emptyset$ and $X(\mathbb{Q}_p) \neq \emptyset$.
- (2) Conversely, does $X(\mathbb{Q}_v) \neq \emptyset$ imply $X(\mathbb{Q}) \neq \emptyset$?
- (3) Positive answer: if X is defined by homogenous quadratic forms, then the above holds (Hasse–Minkowski).
- (4) Negative answer in general.

- (1) If $X(\mathbb{Q}) \neq \emptyset$, then $X(\mathbb{R}) \neq \emptyset$ and $X(\mathbb{Q}_p) \neq \emptyset$.
- (2) Conversely, does $X(\mathbb{Q}_v) \neq \emptyset$ imply $X(\mathbb{Q}) \neq \emptyset$?
- (3) Positive answer: if X is defined by homogenous quadratic forms, then the above holds (Hasse–Minkowski).
- (4) Negative answer in general.
- (5) In 1970, Manin introduced an intermediate set

$$X(\mathbb{Q}) \subset \text{OBS} \subset X(\mathbb{R}) \times \prod X(\mathbb{Q}_p)$$

using the Brauer group of X and class field theory. I will give a detailed construction (called the Brauer–Manin pairing) later.

Conclusion: if X is a nice curve or a nice surface, then $\text{OBS} \neq \emptyset$ implies $X(\mathbb{Q}) \neq \emptyset$. Thus the intermediate set explains why there is a rational point or not.

Conclusion: if X is a nice curve or a nice surface, then $\text{OBS} \neq \emptyset$ implies $X(\mathbb{Q}) \neq \emptyset$. Thus the intermediate set explains why there is a rational point or not.

- (1) Does Manin's method explain the solvability of all polynomial equations?

Conclusion: if X is a nice curve or a nice surface, then $\text{OBS} \neq \emptyset$ implies $X(\mathbb{Q}) \neq \emptyset$. Thus the intermediate set explains why there is a rational point or not.

- (1) Does Manin's method explain the solvability of all polynomial equations?
- (2) Around 2000, Skorobogatov (Invent. Math. 1999) gives a negative answer via descent (and later Poonen (Ann. of Math. 2010) also shows the insufficiency). They constructed explicit examples with $\text{OBS} \neq \emptyset$ but $X(\mathbb{Q}) = \emptyset$.

Conclusion: if X is a nice curve or a nice surface, then $\text{OBS} \neq \emptyset$ implies $X(\mathbb{Q}) \neq \emptyset$. Thus the intermediate set explains why there is a rational point or not.

- (1) Does Manin's method explain the solvability of all polynomial equations?
- (2) Around 2000, Skorobogatov (Invent. Math. 1999) gives a negative answer via descent (and later Poonen (Ann. of Math. 2010) also shows the insufficiency). They constructed explicit examples with $\text{OBS} \neq \emptyset$ but $X(\mathbb{Q}) = \emptyset$.
- (3) Harari, Skorobogatov, Stoll, Demarache, Cao, etc compared many obstruction sets.
- (4) What about other fields?

Higher local fields

- (1) A 0-local field is a finite field.
- (2) For $d \geq 1$, a d -local field is a complete discrete valued field whose residue field is a $(d - 1)$ -local field.

Higher local fields

- (1) A 0-local field is a finite field.
- (2) For $d \geq 1$, a d -local field is a complete discrete valued field whose residue field is a $(d - 1)$ -local field.

For instance, \mathbb{Q}_p and $\mathbb{F}_p((t))$ are 1-local, and $\mathbb{Q}_p((t))$ is 2-local.

Higher local fields

- (1) A 0-local field is a finite field.
- (2) For $d \geq 1$, a d -local field is a complete discrete valued field whose residue field is a $(d-1)$ -local field.

For instance, \mathbb{Q}_p and $\mathbb{F}_p((t))$ are 1-local, and $\mathbb{Q}_p((t))$ is 2-local.

Why these fields? Because the analogue of

$$\mathbb{Q}/\mathbb{Z} \simeq \text{Br } \mathbb{Q}_p \simeq H^2(\mathbb{Q}_p, \mathbb{Q}/\mathbb{Z}(1))$$

should be

$$H^{d+1}(K, \mathbb{Q}/\mathbb{Z}(d)) \simeq \mathbb{Q}/\mathbb{Z}$$

where K is a d -local field.

p-adic function fields

Does $H^{d+1}(X, \mathbb{Q}/\mathbb{Z}(d))$ work well for varieties when $d \geq 2$? We may use

$$H_{\text{nr}}^{d+1}(X, \mathbb{Q}/\mathbb{Z}(d)) := H_{\text{Zar}}^0(X, \mathcal{H}_{\text{ét}}^{d+1}(\mathbb{Q}/\mathbb{Z}(2)))$$

instead.

p-adic function fields

Does $H^{d+1}(X, \mathbb{Q}/\mathbb{Z}(d))$ work well for varieties when $d \geq 2$? We may use

$$H_{\text{nr}}^{d+1}(X, \mathbb{Q}/\mathbb{Z}(d)) := H_{\text{Zar}}^0(X, \mathcal{H}_{\text{ét}}^{d+1}(\mathbb{Q}/\mathbb{Z}(2)))$$

instead. Using Manin's method, H_{nr}^{d+1} and $H_{\text{ét}}^{d+1}$ both give us obstruction sets, denoted by $X(\mathbf{A})^{H_{\text{nr}}^{d+1}}$ and $X(\mathbf{A})^{H_{\text{ét}}^{d+1}}$.

p-adic function fields

Does $H^{d+1}(X, \mathbb{Q}/\mathbb{Z}(d))$ work well for varieties when $d \geq 2$? We may use

$$H_{\text{nr}}^{d+1}(X, \mathbb{Q}/\mathbb{Z}(d)) := H_{\text{Zar}}^0(X, \mathcal{H}_{\text{ét}}^{d+1}(\mathbb{Q}/\mathbb{Z}(2)))$$

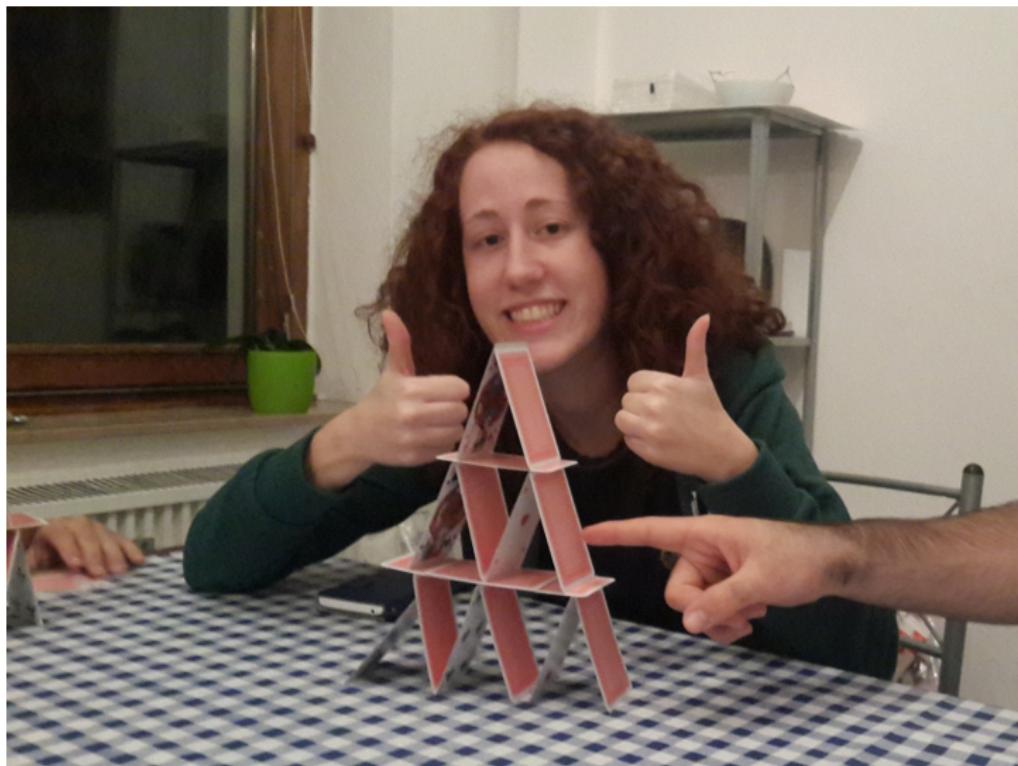
instead. Using Manin's method, H_{nr}^{d+1} and $H_{\text{ét}}^{d+1}$ both give us obstruction sets, denoted by $X(\mathbf{A})^{H_{\text{nr}}^{d+1}}$ and $X(\mathbf{A})^{H_{\text{ét}}^{d+1}}$.

Theorem (Cao–T. 2026)

Let K be a p -adic function field (for instance $\mathbb{Q}_p(t)$). Let X be a smooth integral K -variety. The correct analogue of Manin's obstruction set in this setting is $X(\mathbf{A})^{H_{\text{nr}}^3}$ instead of $X(\mathbf{A})^{H_{\text{ét}}^3}$.

Raffaele, Salvador, Giada, and myself

The only one showing thumb, the only one published a paper in a top journal (Invent. Math.)



Algant graduation in Leiden, 2017

The promised construction

Thanks for your attention!