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Pure fields and monogeneity: definitions

Let
K = Q(α), αn = m ∈ Z \ {0}, f (x) = xn −m irreducible, n ≥ 2.

Monogeneity vs. α-monogeneity

K is monogenic if ∃ θ ∈ OK with OK = Z[θ].

K is α-monogenic if OK = Z[α].

Question
Provide a criterion for m and n so that K is α-monogenic or monogenic.
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Main theorem: α-monogeneity criterion

Criterion theorem

Let K = Q(α) with αn = m and xn −m irreducible. Then

OK = Z[α] ⇐⇒
(
m is square-free

)
and νp(mp −m) = 1 ∀ p | n.

Dedekind index theorem

Factor f in Fp[X ] as

f (X ) = π1(X )e1 · · ·πg (X )eg (πj distinct monic irreducibles).

Lift each πj to a monic πj ∈ Z[X ] and write

f (X ) = π1(X )e1 · · ·πg (X )eg + p F (X ), F ∈ Z[X ].

Then
p | [OK : Z[α]] ⇐⇒ ∃j with ej ≥ 2 and πj | F in Fp[X ].
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Criterion for α-monogeneity

Only primes p | mn can divide [OK : Z[α]] (so it suffices to check p | m and p | n).

Case 1: p | m
Modulo p, f (X ) = X n −m ≡ X n so π(X ) = X has multiplicity e = n ≥ 2. Write

f (X ) = X n + pF (X ), F (X ) = −m

p
∈ Z[X ].

Dedekind ⇒ p | [OK : Z[α]] ⇐⇒ X | F in Fp[X ] ⇐⇒ F ≡ 0 (mod p) ⇐⇒ p2 | m. Hence: no such
p divides the index ⇐⇒ m is square-free.

Case 2: p | n
Write n = pr s with (p, s) = 1 and set g(X ) = X s −m. Over Fp,

f (X ) = X n −m ≡ (X s −m)p
r

= g(X )p
r

,

so every irreducible factor occurs with multiplicity ≥ 2.
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Proof cont.

Case 2: p | n
Define

F (X ) =
f (X )− g(X )p

r

p
∈ Z[X ].

Since f̄ = ḡ pr , Dedekind’s criterion only depends on F̄ . Let α0 be a root of g and work in A = (Z/p2Z)[X ]/(g)
where X s = m. Then

F (α0) ≡ mpr −m

p
(mod p),

so Dedekind ⇒ p | [OK : Z[α]] ⇐⇒ p2 | (mpr −m). Finally, νp(mpr −m) = νp(mp −m), so the obstruction is
exactly

νp(mp −m) ≥ 2 ⇐⇒ p | [OK : Z[α]].
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Examples

Examples

n = 3: OK = Z[α] iff m square-free and m 6≡ ±1 (mod 9).

n = 4: OK = Z[α] iff m square-free and m 6≡ 1 (mod 4).

n = 5: OK = Z[α] iff m square-free and m 6≡ 1, 7, 18, 24 (mod 25).

Important nuance: cubic case

If m ≡ ±1 (mod 9), then OK 6= Z[α] but the field is still monogenic:

θ =
1± α + α2

3
∈ OK , OK = Z[θ].
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Density theorem

Density theorem

Among m with xn −m irreducible,

δn = lim
X→∞

#{1 ≤ m ≤ X : OK = Z[α]}
X

=
6

π2

∏
p|n

p

p + 1
.

Fix n ≥ 2. For a prime p | n define the “bad” set Ep = {m ∈ Z : mp ≡ m (mod p2)}.

Key local facts

The congruence xp ≡ x (mod p2) has exactly p solutions mod p2: one is 0, the other (p − 1) are the
Teichmüller lifts in (Z/p2Z)×.

When intersecting with square-free integers, the class 0 (mod p2) disappears automatically. So “bad”
square-free classes are exactly the (p − 1) Teichmüller unit classes mod p2.

Each unit class mod p2 carries the same square-free density, hence among square-free m we can compute

P(m ∈ Ep) =
1

p + 1
, P(m /∈ Ep) =

p

p + 1
.
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General monogeneity criterion?

Monogeneity asks for solving an index form equation I (x2, . . . , xn) = ±1 in integers (global
Diophantine constraints). Local solubility does not control global solubility.

Two incompatible phenomena with a purely local criterion:
1 Z[α] 6= OK but K still monogenic via a different generator (e.g. pure cubics with m ≡ ±1(mod 9)).
2 There exist number fields with no local obstruction to being monogenic that are nevertheless not

monogenic (positive proportion for cubic fields) by L. Alpöge, M. Bhargava, A. Shnidman.
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Complementary viewpoints

Smith studies radical extensions L( n
√
a)/L. Gives a relative criterion for n

√
a to generate a power

integral basis over OL. Specializing to L = Q recovers exactly our two local conditions.

Bhargava, Shankar and Wang prove positive density results for maximality of the order Z[x ]/(f ) in
its fraction field, and for squarefree discriminants for f in a large-dimensional space of monic
degree-n polynomials.

Arpin, Bozlee, Herr and Smith recast monogeneity from a scheme-theoretic perspective.
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Thank you for your attention!
ALGANT FRIEND FOREVER!
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