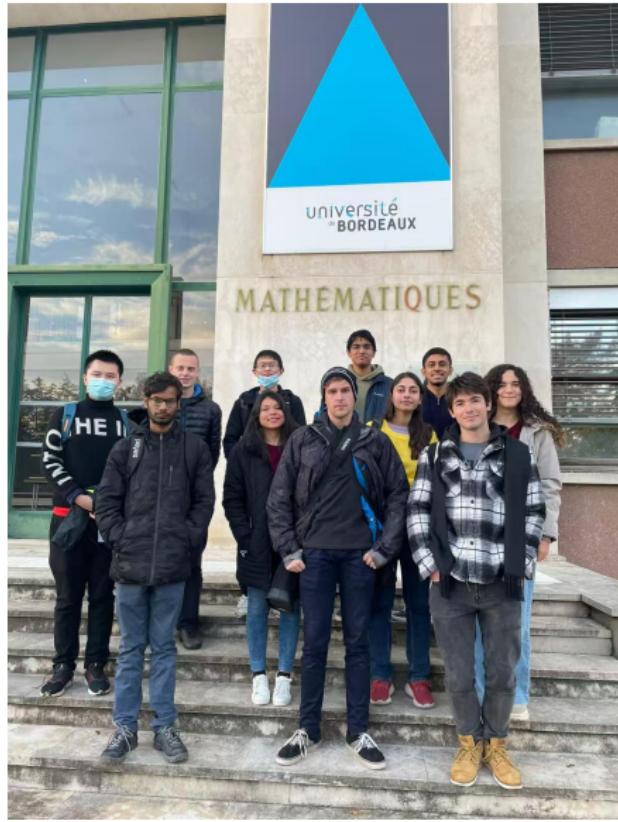


Syntomic cohomology and arithmetic applications

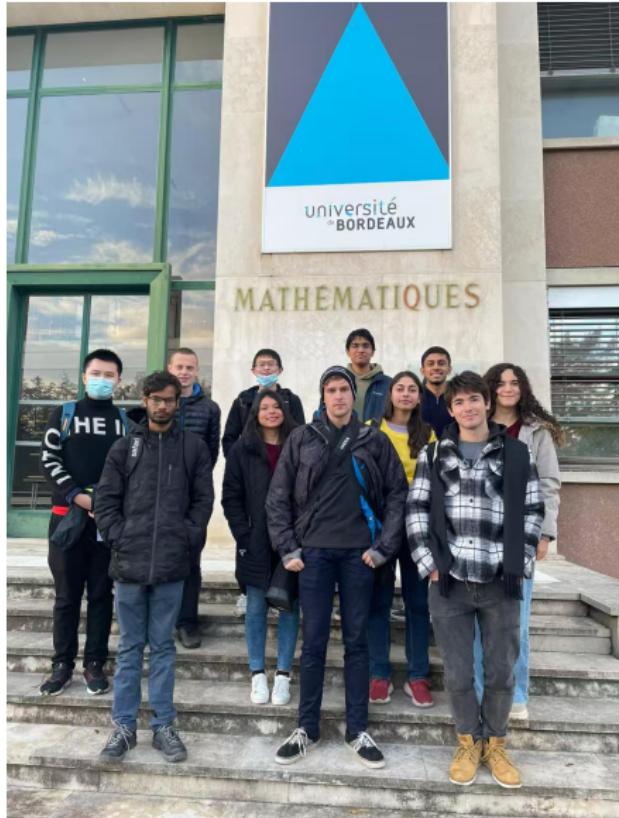
Zhenghui Li

Sorbonne Université
Regensburg-Bordeaux (2020-2022)

ALGANT pictures



ALGANT pictures



What does 'syntomic' mean?

What does 'syntomic' mean?

Definition (Mazur)

A morphism between two schemes is called syntomic if it is flat, locally of finite presentation and local complete intersection.

What does 'syntomic' mean?

Definition (Mazur)

A morphism between two schemes is called syntomic if it is flat, locally of finite presentation and local complete intersection.

Mazur: Syntomic is 'to cut together': You cut out your space from a smooth ambient space, and flatness ensures that as you move in the base, you are cutting it out in the same way.

What does 'syntomic' mean?

Definition (Mazur)

A morphism between two schemes is called syntomic if it is flat, locally of finite presentation and local complete intersection.

Mazur: Syntomic is 'to cut together': You cut out your space from a smooth ambient space, and flatness ensures that as you move in the base, you are cutting it out in the same way.

Definition (Fontaine-Messing)

Let X be a smooth variety over \mathbb{F}_p , the syntomic complex of X is

$$\text{Syn}(X, r) := [\text{Fil}_N^n R\Gamma_{\text{crys}}(X/\mathbb{Z}_p) \xrightarrow{1-\varphi/p^r} R\Gamma_{\text{crys}}(X/\mathbb{Z}_p)]$$

What does 'syntomic' mean?

Definition (Mazur)

A morphism between two schemes is called syntomic if it is flat, locally of finite presentation and local complete intersection.

Mazur: Syntomic is 'to cut together': You cut out your space from a smooth ambient space, and flatness ensures that as you move in the base, you are cutting it out in the same way.

Definition (Fontaine-Messing)

Let X be a smooth variety over \mathbb{F}_p , the syntomic complex of X is

$$\text{Syn}(X, r) := [\text{Fil}_N^n R\Gamma_{\text{crys}}(X/\mathbb{Z}_p) \xrightarrow{1-\varphi/p^r} R\Gamma_{\text{crys}}(X/\mathbb{Z}_p)]$$

'Cut the cohomology using the filtration and Frobenius together'.

Why do we study it?

Why do we study it?

Theorem (Fontaine-Messing)

Let X be a smooth variety over \mathbb{F}_p , there is an exact sequence in X_{syn}

$$0 \rightarrow \mu_{p^n} \rightarrow \mathcal{I}_n \xrightarrow{1-\varphi/p^n} \mathcal{O}_n^{\text{crys}} \rightarrow 0$$

Why do we study it?

Theorem (Fontaine-Messing)

Let X be a smooth variety over \mathbb{F}_p , there is an exact sequence in X_{syn}

$$0 \rightarrow \mu_{p^n} \rightarrow \mathcal{I}_n \xrightarrow{1-\varphi/p^n} \mathcal{O}_n^{\text{crys}} \rightarrow 0$$

This gives a link between crystalline cohomology and flat cohomology.

Why do we study it?

Theorem (Fontaine-Messing)

Let X be a smooth variety over \mathbb{F}_p , there is an exact sequence in X_{syn}

$$0 \rightarrow \mu_{p^n} \rightarrow \mathcal{I}_n \xrightarrow{1-\varphi/p^n} \mathcal{O}_n^{\text{crys}} \rightarrow 0$$

This gives a link between crystalline cohomology and flat cohomology.

Theorem (Fontaine-Messing, Bloch-Kato)

Let \mathfrak{X} be a smooth p -adic formal scheme over \mathbb{Z}_p . For $i \leq r$, we have isomorphisms

$$H_{\text{ét}}^i(\mathfrak{X}_\eta, \mathbb{Q}_p(r)) \cong H_{\text{syn}}^i(\mathfrak{X}_s, r)_{\mathbb{Q}}$$

Why do we study it?

Theorem (Fontaine-Messing)

Let X be a smooth variety over \mathbb{F}_p , there is an exact sequence in X_{syn}

$$0 \rightarrow \mu_{p^n} \rightarrow \mathcal{I}_n \xrightarrow{1-\varphi/p^n} \mathcal{O}_n^{\text{crys}} \rightarrow 0$$

This gives a link between crystalline cohomology and flat cohomology.

Theorem (Fontaine-Messing, Bloch-Kato)

Let \mathfrak{X} be a smooth p -adic formal scheme over \mathbb{Z}_p . For $i \leq r$, we have isomorphisms

$$H_{\text{ét}}^i(\mathfrak{X}_\eta, \mathbb{Q}_p(r)) \cong H_{\text{syn}}^i(\mathfrak{X}_s, r)_{\mathbb{Q}}$$

This gives a crystalline study of p -adic étale cohomology.

Link with flat cohomology

Let k be a finitely generated in $\text{char } p > 0$ and $f : X \rightarrow \text{Spec } k$ be a projective smooth variety.

Link with flat cohomology

Let k be a finitely generated in $\text{char } p > 0$ and $f : X \rightarrow \text{Spec } k$ be a projective smooth variety.

Theorem (L-Qin)

Let G be a p -divisible group over X . Then $R^i f_{\text{fppf}*} G$ is isogeneous to a p -divisible group H^i . Moreover, we have a natural isomorphism of F -isocrystals:

$$\mathcal{M}^{cr}(H^i)_{\mathbb{Q}} \cong R^i f_{\text{crys}*} \mathcal{M}^{cr}(G)_{\mathbb{Q}, [0,1]}$$

where $\mathcal{M}^{cr}(-)$ is the covariant crystalline Dieudonne functor.

Link with flat cohomology

Recall the famous Tate conjecture (for divisors):

Link with flat cohomology

Recall the famous Tate conjecture (for divisors):

Conjecture ($T^1(X, l)$)

Let $l \neq p$ be a prime. The cycle class map

$$\mathrm{Pic}(X) \otimes \mathbb{Q}_l \longrightarrow H^2(X_{k^s}, \mathbb{Q}_l(1))^{G_k}$$

is surjective.

Link with flat cohomology

Recall the famous Tate conjecture (for divisors):

Conjecture ($T^1(X, l)$)

Let $l \neq p$ be a prime. The cycle class map

$$\mathrm{Pic}(X) \otimes \mathbb{Q}_l \longrightarrow H^2(X_{k^s}, \mathbb{Q}_l(1))^{G_k}$$

is surjective.

By studying flat cohomology using Kummer theory and syntomic cohomology, we generalize well-known work of Tate, Lichtenbaum and Milne:

Link with flat cohomology

Recall the famous Tate conjecture (for divisors):

Conjecture ($T^1(X, l)$)

Let $l \neq p$ be a prime. The cycle class map

$$\mathrm{Pic}(X) \otimes \mathbb{Q}_l \longrightarrow H^2(X_{k^s}, \mathbb{Q}_l(1))^{G_k}$$

is surjective.

By studying flat cohomology using Kummer theory and syntomic cohomology, we generalize well-known work of Tate, Lichtenbaum and Milne:

Theorem (L-Qin)

The finiteness of exponent of $\mathrm{Br}(X_{k^s})^{G_k}[p^\infty]$ is equivalent to the Tate conjecture $T^1(X, l)$ for X .

Link with p -adic étale cohomology

p -adic étale cohomology theory for rigid analytic varieties is different from algebraic cases:

Link with p -adic étale cohomology

p -adic étale cohomology theory for rigid analytic varieties is different from algebraic cases:

Example

Let \mathbb{D}_C be the one dimensional open unit disk over C .

$$H_{\text{proét}}^n(\mathbb{D}_C, \mathbb{Q}_p) = \begin{cases} \mathbb{Q}_p & n = 0 \\ \mathcal{O}(\mathbb{D}_C)/C(-1) & n = 1 \\ 0 & \text{others} \end{cases}$$

$$H_{\text{proét},c}^n(\mathbb{D}_C, \mathbb{Q}_p) \begin{cases} \mathcal{O}(\partial\mathbb{D}_C)/\mathcal{O}(\mathbb{D}_C)(-1) \oplus \mathbb{Q}_p(-1) & n = 2 \\ 0 & \text{others} \end{cases}$$

Link with p -adic étale cohomology

p -adic étale cohomology theory for rigid analytic varieties is different from algebraic cases:

Example

Let \mathbb{D}_C be the one dimensional open unit disk over C .

$$H_{\text{proét}}^n(\mathbb{D}_C, \mathbb{Q}_p) = \begin{cases} \mathbb{Q}_p & n = 0 \\ \mathcal{O}(\mathbb{D}_C)/C(-1) & n = 1 \\ 0 & \text{others} \end{cases}$$

$$H_{\text{proét},c}^n(\mathbb{D}_C, \mathbb{Q}_p) \begin{cases} \mathcal{O}(\partial\mathbb{D}_C)/\mathcal{O}(\mathbb{D}_C)(-1) \oplus \mathbb{Q}_p(-1) & n = 2 \\ 0 & \text{others} \end{cases}$$

There is no naive Poincaré duality by degree reason.

Link with p -adic étale cohomology

Using the syntomic cohomology, one can attach a (quasi-coherent) sheaf $\mathcal{E}_{\text{proét}}(X, r)$ over the Fargues-Fontaine curve which 'represents' the pro-étale cohomology. Colmez-Gilles-Nizioł proved a 'Poincaré duality on the Fargues-Fontaine curve':

Link with p -adic étale cohomology

Using the syntomic cohomology, one can attach a (quasi-coherent) sheaf $\mathcal{E}_{\text{proét}}(X, r)$ over the Fargues-Fontaine curve which 'represents' the pro-étale cohomology. Colmez-Gilles-Nizioł proved a 'Poincaré duality on the Fargues-Fontaine curve':

Theorem (CGN)

Let X be a smooth connected Stein space over K of dimension d . Assume $r, r' \geq 2d$ and $s = r + r' - d$. Then there is a natural quasi-isomorphism of complexes of G_K -equivariant sheaves

$$\mathcal{E}_{\text{proét}}(X_C, \mathbb{Q}_p(r)) \cong R\mathcal{H}om(\mathcal{E}_{\text{proét},c}(X_C, \mathbb{Q}_p(r'))[2d], \mathcal{O} \otimes \mathbb{Q}_p(s)). \quad (1)$$

Link with p -adic étale cohomology

Using the syntomic cohomology, one can attach a (quasi-coherent) sheaf $\mathcal{E}_{\text{proét}}(X, r)$ over the Fargues-Fontaine curve which 'represents' the pro-étale cohomology. Colmez-Gilles-Nizioł proved a 'Poincaré duality on the Fargues-Fontaine curve':

Theorem (CGN)

Let X be a smooth connected Stein space over K of dimension d . Assume $r, r' \geq 2d$ and $s = r + r' - d$. Then there is a natural quasi-isomorphism of complexes of G_K -equivariant sheaves

$$\mathcal{E}_{\text{proét}}(X_C, \mathbb{Q}_p(r)) \cong R\mathcal{H}om(\mathcal{E}_{\text{proét},c}(X_C, \mathbb{Q}_p(r'))[2d], \mathcal{O} \otimes \mathbb{Q}_p(s)). \quad (1)$$

But there is a genuine duality for arithmetic cohomology

Theorem (L)

Let X be a smooth partially proper variety over K where $[K, \mathbb{Q}_p] < \infty$.

- 1 There is a quasi-isomorphism in $D(\mathbb{Q}_p, \square)$ (solid \mathbb{Q}_p -vector spaces) induced by the arithmetic trace map

$$\gamma_{\text{proét}} : R\Gamma_{\text{proét}}(X, \mathbb{Q}_p(j)) \xrightarrow{\sim} \mathbb{D}_{\mathbb{Q}_p}(R\Gamma_{\text{proét}, c}(X, \mathbb{Q}_p(d+1-j))[2d+2])$$

where $\mathbb{D}_{\mathbb{Q}_p}(-) := R\text{Hom}_{\mathbb{Q}_p}(-, \mathbb{Q}_p)$.

- 2 Assume further that X is a Stein space. Then the cohomology and compactly supported cohomology groups are classical. Moreover $\gamma_{\text{proét}}$ induces isomorphisms of topological vector spaces

$$H_{\text{proét}}^i(X, \mathbb{Q}_p(j)) \simeq H_{\text{proét}, c}^{2d+2-i}(X, \mathbb{Q}_p(d+1-j))^*,$$

$$H_{\text{proét}, c}^i(X, \mathbb{Q}_p(j)) \simeq H_{\text{proét}}^{2d+2-i}(X, \mathbb{Q}_p(d+1-j))^*.$$

Thank you!