A Synthetic Approach for Computing
Equivariant Slice Differentials

Yuchen Wu

University of California San Diego

December 2025

Yuchen Wu (UCSD) ALGANT



Plan for the talk

» Theory: synthetic methods for manipulating differentials in SS.

» Application: computing differentials in the equivariant slice SS.
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Synthetic methods

Theorem (Kervaire invariant problem for j = 6, Lin-Wang—Xu)

There exists a closed framed manifold of dimension 26 — 2 = 126 that cannot be converted to a
homotopy sphere via framed surgery.

Yuchen Wu (UCSD) ALGANT December 2025 3/20



Synthetic methods

Theorem (Kervaire invariant problem for j = 6, Lin-Wang—Xu)

There exists a closed framed manifold of dimension 26 — 2 = 126 that cannot be converted to a
homotopy sphere via framed surgery.

Equivalently,

Theorem (Kervaire invariant problem for j = 6, Lin-Wang—Xu) J

In AdamsSS(S°), h2 € E2?%? is a permanent cycle.
6 € L
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Synthetic methods

Key ingredient: hidden extensions.

Take X — Y a map between finite CW complexes, consider Adams SS:

a€ Ey*(X) ——= be Ey°(Y) a€ FEy*(X) —— 0e Ey*(Y)

jump\;;;\\\$

be ErtR(y)

!

aemiX) —— Bemi(Y) aemHX) —— Bemi(Y)
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For f: X — Y map between finite CW complexes, Lin, Wang and Xu establish

» generalized Mahowald trick:

> translation between “extensions along f” and “diffs in AdamsSS(Cf)”
» generalized Leibniz rule:

> short diffs in X + extensions along f ~~ long diffs in Y

These provide enough information of AdamsSS(S°) around n = 126.
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To extend Lin—Wang—Xu's results beyond Adams-type SS, we use filtered spectra.

Roughly speaking, Sp = D(R) where R =S is the sphere spectrum.

Definition (Filtered spectra)
FilSp = Fun(Zposet, Sp) = {X: -+ = X(2) = X(1) = X(0) = X(-1) — --- }. J
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To extend Lin—Wang—Xu's results beyond Adams-type SS, we use filtered spectra.

Roughly speaking, Sp = D(R) where R =S is the sphere spectrum.

Definition (Filtered spectra)
FilSp = Fun(Zposet, Sp) = {X: -+ = X(2) = X(1) = X(0) = X(-1) — --- }. J

For each X € FilSp, there is an associated SS {E/»*(X)} with
E*(X)=m(X(n+s)/X(n+s+1)), |d]=(-1,r).

We can make sense of hidden extensions in this context.
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Generalized Mahowald trick

We can translate between extensions and differentials.

Theorem (gen. Mahowald trick, b—? b
Lin-Wang—Xu, W.)
Suppose Z %> X 1Y is a fiber sequences in di+1 jump =k
FilSp. There is a correspondence between
f-extension with filtration jump k and dj41 i— a
differential in E;"(Z).

» sy 0,z 9 x Ly
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Generalized Leibniz rule

Short differentials and extensions can be merged to produce long differentials.

Theorem (gen. Leibniz rule,
Lin-Wang—Xu, W.)
Let f: X — Y be a map in FilSp. For
a,b € Ey"(X) and a,b € Ey*(Y)
d.(a") =1V in By (X).
There is an f-extension from a' to a with
filtration jump k.
There is an f-extension from b’ to b with
filtration jump m.
We have d;4pm—k(a) = b in EX"(Y).

Yuchen Wu (UCSD) ALGANT December 2025 10/20



Equivariant slice SS

We use these tools to study H SliceSS(BP(%) (m)), here
» G=Cs, HCG.
> M E Z>.
» BPU)(m): Hill-Hopkins—Ravenel theories. We write BP((¢2) — BPy.
» H SliceSS: equivariant slice spectral sequence.
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Equivariant slice SS

We use these tools to study H SliceSS(BP(%) (m)), here
» G=Cs, HCG.
> M E Z>.
» BPU)(m): Hill-Hopkins—Ravenel theories. We write BP((¢2) — BPy.
» H SliceSS: equivariant slice spectral sequence.

Definitions are complicated.
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Motivations:
» Geometric topology: partial computation of Cg SliceSS(BP{(“®)) (1)) solves Kervaire invariant
problem (in negative) for j > 7.
» Chromatic homotopy: For h = 2"~ 1m, BP((Cz"))(m) is a “model” for Lubin—Tate theory E} with
Cyn action. Conjecturally, combining all these data together yields 7, (S)s.

» Arithmetic geometry: "Higher height analog” of crystalline / prismatic cohomology.
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For G = Cs, all C3SliceSS(BPgr(m)) are fully
understood.

The E5 page of C3 SliceSS(BPg(m)) is
HZ.[ty, ... ], where

HZ, = Zlas, u2s]/(2a,) + negative cone. b
All diffs are generated by m \ VoL
d3(’d2g), d7(u4g), d15(u80), ey d2m+1_1(u,2m0)_ - e ;E Ry

Figure: Cs SliceSS of BPg(2)
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Cy things get quite involved:

For G
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We work with X = BP(C) (m) for all m € Z>;.

We fully understand C5 SliceSS(BPg(m)). Its differentials are generated by
d3(u2s), d7(tas), di5(Use); - - -, dom+1_1(Uzme).
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We work with X = BP(C) (m) for all m € Z>;.

We fully understand C5 SliceSS(BPg(m)). Its differentials are generated by
d3(u2s), d7(tas), di5(Use); - - -, dom+1_1(Uzme).
~~ Two sources for short diffs in Cy SliceSS(BP((C4)) (m)):

Transfer differentials: d,. «~ d, between C, SliceSS(BPg(2m)) and Cy SliceSS(BP(“4) (m)) .

Sheared differentials: d,. «~ da,.—1 between Cj SliceSS(BPg(m)) and the region of
C,4 SliceSS(BPUC4)) (m)) above the line of slope 1.
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Using GLR and GMT, we can “splice together” the h-th transfer differential (1 < i < 2m) and the ¢-th
sheared differentials (1 < ¢ < m) to get new families of long differentials.
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Using GLR and GMT, we can “splice together” the h-th transfer differential (1 < i < 2m) and the ¢-th
sheared differentials (1 < ¢ < m) to get new families of long differentials.

Theorem (Exotic transfer paradigm, W.)

Suppose for 1 < h < 2m, there exists a homogeneous polynomial P and two classes x, ¢ in the Fy-page
of the Cy-slice SS of BP{C4)(m) so that

T v = P(El')/{l, 000 ,t_Qm_l’yt_Qm_l) +c+ ")’(C) mod (2,’1_)1, 000 ,’l_ih_l).

Then for each 1 < ¢ < m and j > 0, there is a differential in the Cy-slice SS of BP{(C4)) (m)

d2h+1+2q+2_5(tr($aa—2)U2h—1>\1 ’U,kg) = P(Dl, .. ,ng_1)02«1_1u2q+1jc,a(2h+2q_1)>\la(2q+1_2)a

here k = 297% + 29 —p — 1.
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Corollary (Exotic transfer differentials)
There is a family of Cy-slice differentials for BP (1) () :
d22m+1+2m+2_5( tr(%::iagz)’lgszl)‘l U(2m+1j+2m+1_22m_1)0-)
= 6§:tiu2m+1jaa(22m+2m_1))\1 a(2m+1 —2)o

from splicing the longest transfer diff from BPgr(2n) and the longest sheared diff from BPg(n);
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Corollary (Exotic transfer differentials)
There is a family of Cy-slice differentials for BP (1) () :
d22m+1+2m+2_5( tr(%z:}agz)lwszl)‘l u(2m+1j+2m+1_22m_1)0-)
= 63:—_"_%U2m+1j0-a(22m+2m_1))\1 a(2m+1 —2)o
from splicing the longest transfer diff from BPgr(2n) and the longest sheared diff from BPg(n);

If 2 < m < 4, there is another family of Cy-slice differentials for BP((C“))(m) :

d22m+2m+1_5( tr(tlao-z)U22m—2)\1U(Qmj+2m—1_22m—2_1)o-)
_2717,71

= DQm_1_102m,1U2mj0a(22m—1+2m—1_1)A1G,(Qm_Q)o-

coming from the second longest pair.
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Corollary (Exotic transfer differentials)
There is a family of Cy-slice differentials for BPUC4) (m)
d22m+1+2m+2_5( tr(%::}a@)u?mqh U(2m+1j+2m+1_22m_1)0-)
= 63:—_"_%U2m+1j0-a(22m+2m_1))\1 a(2m+1 —2)o
from splicing the longest transfer diff from BPgr(2n) and the longest sheared diff from BPg(n);

If 2 < m < 4, there is another family of Cy-slice differentials for BP((C“))(m) :

d22m+2m+1_5< tr(tlagz )U22m—2)\1U(Qmj+2m—1_22m—2_1)o.)
_2717,71

= 02m_1_102m,1u2mj0a(22m—1+2m—1_1)/\1a(Qm_Q)o.

coming from the second longest pair.

In known cases, this recovers dq1 in Cy SliceSS(BPU“) (1)) as well as dy3 and dyg in
O, SliceSS(BP((“4))(2))  difficult to obtain before.
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Thanks!
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