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Plan for the talk

▶ Theory: synthetic methods for manipulating differentials in SS.

▶ Application: computing differentials in the equivariant slice SS.

Yuchen Wu (UCSD) ALGANT December 2025 2 / 20



Synthetic methods

Theorem (Kervaire invariant problem for j = 6, Lin–Wang–Xu)

There exists a closed framed manifold of dimension 26 − 2 = 126 that cannot be converted to a
homotopy sphere via framed surgery.

Equivalently,

Theorem (Kervaire invariant problem for j = 6, Lin–Wang–Xu)

In AdamsSS(S0), h2
6 ∈ E126,2

2 is a permanent cycle.
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Figure: AdamsSS of S0
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Figure: AdamsSS of S0
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Synthetic methods

Key ingredient: hidden extensions.

Take X → Y a map between finite CW complexes, consider Adams SS:

a ∈ En,s
2 (X) b ∈ En,s

2 (Y ) a ∈ En,s
2 (X) 0 ∈ En,s

2 (Y )

b ∈ En,s+k
2 (Y )

α ∈ πst
n (X) β ∈ πst

n (Y ) α ∈ πst
n (X) β ∈ πst

n (Y )

jump = k
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For f : X → Y map between finite CW complexes, Lin, Wang and Xu establish

▶ generalized Mahowald trick:

▷ translation between “extensions along f” and “diffs in AdamsSS(Cf)”

▶ generalized Leibniz rule:

▷ short diffs in X + extensions along f ⇝ long diffs in Y

These provide enough information of AdamsSS(S0) around n = 126.
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To extend Lin–Wang–Xu’s results beyond Adams-type SS, we use filtered spectra.

Roughly speaking, Sp = D(R) where R = S is the sphere spectrum.

Definition (Filtered spectra)

FilSp = Fun(Zposet, Sp) = {X : · · · → X(2) → X(1) → X(0) → X(−1) → · · · }.

For each X ∈ FilSp, there is an associated SS {En,s
r (X)} with

En,s
2 (X) = πn(X(n+ s)/X(n+ s+ 1)), |dr| = (−1, r).

We can make sense of hidden extensions in this context.
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Generalized Mahowald trick

We can translate between extensions and differentials.

Theorem (gen. Mahowald trick,
Lin–Wang–Xu, W.)

Suppose Z
g−→ X

f−→ Y is a fiber sequences in
FilSp. There is a correspondence between
f -extension with filtration jump k and dk+1

differential in E∗,∗
⋆ (Z).

b b b

a a

Σ−1Y Z X Y

dk+1 jump = k

δ g f
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Generalized Leibniz rule

Short differentials and extensions can be merged to produce long differentials.

Theorem (gen. Leibniz rule,
Lin–Wang–Xu, W.)

Let f : X → Y be a map in FilSp. For
a′, b′ ∈ E∗,∗

2 (X) and a, b ∈ E∗,∗
2 (Y )

1 dr(a
′) = b′ in E∗,∗

⋆ (X).

2 There is an f -extension from a′ to a with
filtration jump k.

3 There is an f -extension from b′ to b with
filtration jump m.

We have dr+m−k(a) = b in E∗,∗
⋆ (Y ).

b

b′

a

a′

X Y

jump = m

dr+m−k

dr

jump = k

f
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Equivariant slice SS

We use these tools to study H SliceSS(BP((G))⟨m⟩), here
▶ G = C2n , H ⊂ G.

▶ m ∈ Z≥1.

▶ BP((G))⟨m⟩: Hill–Hopkins–Ravenel theories. We write BP((C2)) = BPR.

▶ H SliceSS: equivariant slice spectral sequence.

Definitions are complicated.
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Motivations:

▶ Geometric topology: partial computation of C8 SliceSS(BP
((C8))⟨1⟩) solves Kervaire invariant

problem (in negative) for j ≥ 7.

▶ Chromatic homotopy: For h = 2n−1m, BP((C2n ))⟨m⟩ is a “model” for Lubin–Tate theory Eh with
C2n action. Conjecturally, combining all these data together yields π∗(S)2̂.

▶ Arithmetic geometry: “Higher height analog” of crystalline / prismatic cohomology.
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For G = C2, all C2 SliceSS(BPR⟨m⟩) are fully
understood.

The E2 page of C2 SliceSS(BPR⟨m⟩) is
HZ⋆[t1, . . . , tm], where
HZ⋆ = Z[aσ, u2σ]/(2aσ) + negative cone.

All diffs are generated by
d3(u2σ), d7(u4σ), d15(u8σ), . . . , d2m+1−1(u2mσ).

Figure: C2 SliceSS of BPR⟨2⟩
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For G = C4 things get quite involved:

Figure: C4 SliceSS of BP((C4))⟨1⟩
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Figure: C4 SliceSS of BP((C4))⟨2⟩
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Figure: C4 SliceSS of BP((C4))⟨2⟩
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We work with X = BP((C4))⟨m⟩ for all m ∈ Z≥1.

We fully understand C2 SliceSS(BPR⟨m⟩). Its differentials are generated by
d3(u2σ), d7(u4σ), d15(u8σ), . . . , d2m+1−1(u2mσ).

⇝ Two sources for short diffs in C4 SliceSS(BP
((C4))⟨m⟩):

1 Transfer differentials: dr ↭ dr between C2 SliceSS(BPR⟨2m⟩) and C2 SliceSS(BP
((C4))⟨m⟩) .

2 Sheared differentials: dr ↭ d2r−1 between C2 SliceSS(BPR⟨m⟩) and the region of

C4 SliceSS(BP
((C4))⟨m⟩) above the line of slope 1.
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Using GLR and GMT, we can “splice together” the h-th transfer differential (1 ≤ h ≤ 2m) and the q-th
sheared differentials (1 ≤ q ≤ m) to get new families of long differentials.

Theorem (Exotic transfer paradigm, W.)

Suppose for 1 ≤ h ≤ 2m, there exists a homogeneous polynomial P and two classes x, c in the E2-page
of the C2-slice SS of BP((C4))⟨m⟩ so that

x · v̄h = P (t̄1γt̄1, . . . , t̄2m−1γt̄2m−1) + c+ γ(c) mod (2, v̄1, . . . , v̄h−1).

Then for each 1 ≤ q ≤ m and j ≥ 0, there is a differential in the C4-slice SS of BP((C4))⟨m⟩

d2h+1+2q+2−5(tr(xaσ2
)u2h−1λ1

ukσ) = P (d̄1, . . . , d̄2m−1)d̄2q−1u2q+1jσa(2h+2q−1)λ1
a(2q+1−2)σ

here k = 2q+1j + 2q − p− 1.
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Corollary (Exotic transfer differentials)

There is a family of C4-slice differentials for BP((C4))⟨m⟩:

d22m+1+2m+2−5( tr(t̄
2m−1
2m−1aσ2)u22m−1λ1

u(2m+1j+2m+1−22m−1)σ)

= d̄2
m+1

2m−1u2m+1jσa(22m+2m−1)λ1
a(2m+1−2)σ

from splicing the longest transfer diff from BPR⟨2n⟩ and the longest sheared diff from BPR⟨n⟩;

If 2 ≤ m ≤ 4, there is another family of C4-slice differentials for BP((C4))⟨m⟩:

d22m+2m+1−5( tr(t̄1aσ2
)u22m−2λ1

u(2mj+2m−1−22m−2−1)σ)

= d̄2
m−1

2m−1−1d̄2m−1u2mjσa(22m−1+2m−1−1)λ1
a(2m−2)σ

coming from the second longest pair.

In known cases, this recovers d11 in C4 SliceSS(BP
((C4))⟨1⟩) as well as d43 and d19 in

C4 SliceSS(BP
((C4))⟨2⟩), difficult to obtain before.
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Thanks!
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