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Enumerative geometry: what is it?

» Enumerative geometry =~ The Hilbert's 15th Problem
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Enumerative geometry: what is it?

» Enumerative geometry =~ The Hilbert's 15th Problem

[Got]
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Enumerative geometry: what is it?

» Enumerative geometry =~ The Hilbert's 15th Problem

> [Got]

» Schubert calculus needs to be rigorous!

o =) = = £ DA
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Enumerative geometry: what is it?

» Enumerative geometry =~ The Hilbert's 15th Problem

> e e S [Got]
» Schubert calculus needs to be rigorous!

» Typical question: how many X satisfy condition Y7

=] F = = £ DA
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One of the first enumerative problems

(taken from Wiki)
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One of the first enumerative problems

(taken from Wiki)

» Apollonius of Perga (circa 240-190 BC): Given three circles on
the plane, how many circles are tangent to them?
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One of the first enumerative problems

(taken from Wiki)

» Apollonius of Perga (circa 240-190 BC): Given three circles on
the plane, how many circles are tangent to them?

» 240 BC: Qin Shihuang became the first emperor of China
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One of the first enumerative problems

(taken from Wiki)

» Apollonius of Perga (circa 240-190 BC): Given three circles on
the plane, how many circles are tangent to them?

» 240 BC: Qin Shihuang became the first emperor of China

» 190 BC: Chang'an became the eastern terminus of the Silk
Road to Europe.
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Typical questions

» How many points do two lines intersect at?
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Typical questions

» How many points do two lines intersect at?

» How many points does a line intersect with a conic at?
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Typical questions

» How many points do two lines intersect at?
» How many points does a line intersect with a conic at?

» How many lines are there on a smooth cubic surface?
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Intersection of a Circle and a Line

» On R?, there might and might not be, depending on where
they are
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Intersection of a Circle and a Line

» On R?, there might and might not be, depending on where
they are

> Not very satisfying: we want a “universal” answer, like the
fundamental theorem of algebra!
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Intersection of a Circle and a Line

» On R?, there might and might not be, depending on where
they are

> Not very satisfying: we want a “universal” answer, like the
fundamental theorem of algebra!

» Some extra conditions are required, just like we extend from R
to C for the fundamental theorem of algebra
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Solution to the “bad” situations

» Switch to algebra, we plug y = ax + b into x> + y?> =1
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Solution to the “bad” situations

» Switch to algebra, we plug y = ax + b into x> + y?> =1
» Discriminant A >, =, < 0 respectively give 2,1,0 solutions
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Solution to the “bad” situations

» Switch to algebra, we plug y = ax + b into x> + y?> =1
» Discriminant A >, =, < 0 respectively give 2,1,0 solutions

> If we count “multiplicity”, then in the 1-solution case we still
have 2 points

Enumerative geometry?  Lines on cubic surfaces over C, Lines on cubic surfaces over arbitrary fields  Personal experiences



Solution to the “bad” situations

» Switch to algebra, we plug y = ax + b into x> + y?> =1
» Discriminant A >, =, < 0 respectively give 2,1,0 solutions

> If we count “multiplicity”, then in the 1-solution case we still
have 2 points

» What if A < 07
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Solution to the “bad” situations

v

Switch to algebra, we plug y = ax + binto x> + y? =1
» Discriminant A >, =, < 0 respectively give 2,1,0 solutions

v

If we count “multiplicity”, then in the 1-solution case we still
have 2 points

» What if A < 07

» Allow solutions from C
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Solution to the “bad” situations

» Switch to algebra, we plug y = ax + b into x> + y?> =1

v

Discriminant A >, =, < 0 respectively give 2,1,0 solutions

> If we count “multiplicity”, then in the 1-solution case we still
have 2 points

» What if A < 07

» Allow solutions from C
_ —ab+VA
> X1,2 - 1+32
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Solution to the “bad” situations

» Switch to algebra, we plug y = ax + b into x> + y?> =1

» Discriminant A >, =, < 0 respectively give 2,1,0 solutions

» If we count “multiplicity”, then in the 1-solution case we still
have 2 points

> What if A <07

» Allow solutions from C

> xi = 7_"1%3\2/3

» The coefficients can be complex, so we need to fix the

problem when a°> — —1
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Solution to the “bad” situations

vy

vvyyy

v

Switch to algebra, we plug y = ax + binto x> + y? =1
Discriminant A >, =, < 0 respectively give 2,1,0 solutions

If we count “multiplicity”, then in the 1-solution case we still
have 2 points

What if A < 07

Allow solutions from C

—ab+VvA
X1,2 = al+a\2/>

The coefficients can be complex, so we need to fix the
problem when a°> — —1

Complex projective plane
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What about singular conics?

» Cohomology method: regard the line and the conic as global
sections (s1, 52) of Op2(1) and Op2(2) over P2
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What about singular conics?

» Cohomology method: regard the line and the conic as global
sections (s1, 52) of Op2(1) and Op2(2) over P2
> (s1,52) becomes a section of Op2(1) © Op2(2) over P2
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What about singular conics?

» Cohomology method: regard the line and the conic as global
sections (s1, 52) of Op2(1) and Op2(2) over P2

> (s1,52) becomes a section of Op2(1) © Op2(2) over P2

» Compute the Euler class e(&) of £ : Op2(1) © Op2(2) — P2
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What about singular conics?

» Cohomology method: regard the line and the conic as global
sections (s1, 52) of Op2(1) and Op2(2) over P2

> (s1,52) becomes a section of Op2(1) © Op2(2) over P2

» Compute the Euler class e(&) of £ : Op2(1) © Op2(2) — P2

» This will give us the desired number 2
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Lines on a smooth cubic surface over C

» In 1849 (Daoguang 29th year), Irish mathematician George
Salmon and British mathematician Arthur Cayley [Cay49]
worked out that there are 27 lines on every smooth cubic

surface over C.
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Lines on a smooth cubic surface over C

» In 1849 (Daoguang 29th year), Irish mathematician George
Salmon and British mathematician Arthur Cayley [Cay49]
worked out that there are 27 lines on every smooth cubic

surface over C.

(taken from Wiki)
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Lines on a smooth cubic surface over C

» In 1849 (Daoguang 29th year), Irish mathematician George
Salmon and British mathematician Arthur Cayley [Cay49]
worked out that there are 27 lines on every smooth cubic

surface over C.
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(taken from Wiki)

» [PBO7]In the letter to Salmon, Cayley said there could only be
finitely many of lines on a smooth cubic surface. Then

Salmon proved the number 27.
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Classical approaches

> [Gat21] The Fermat cubic X = V4. (53 +x3 + 3 +x3) C P2
contains 27 lines, represented by the following matrices
10 0 —-w]flt o —w 0]l - 0 0
01 —w 0“01 0 —wao 0 1 —u
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Classical approaches

> [Gat21] The Fermat cubic X = Vi (x3 + X3 + x5 +x3) C P2
contains 27 lines, represented by the following matrices
10 0 —w|lfl1 0 —w 0|1 = 0 O
01 —w 0“01 0 —wao 0 1 —u
» Schubert cell, cellular decomposition, and cohomology
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Classical approaches

> [Gat21] The Fermat cubic X = Vi (x3 + X3 + x5 +x3) C P2
contains 27 lines, represented by the following matrices
10 0 -1 0 —w 0]l —w 0 O
01 —w 0H01 0 —wj:||:0 0 1 —u
» Schubert cell, cellular decomposition, and cohomology
» Euler class argument[EH16]
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Euler class argument in C

» A polynomial f defining a cubic surface would give a section
or of the vector bundle Sym3S* — Gre(2, 4)
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Euler class argument in C

» A polynomial f defining a cubic surface would give a section
or of the vector bundle Sym3S* — Gre(2, 4)

| 2 Uf(W) = f|W
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Euler class argument in C

» A polynomial f defining a cubic surface would give a section
or of the vector bundle Sym3S* — Gre(2, 4)

> Uf(W) = f|W
» If a line W is on the surface, then of(W) =0
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Euler class argument in C

» A polynomial f defining a cubic surface would give a section
or of the vector bundle Sym3S* — Gre(2, 4)

> Uf(W) = f|W
» If a line W is on the surface, then of(W) =0
» Euler class e(Sym3S*) can be computed as

D WeGr(2.4),00(W)=0 9€8w OF
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Euler class argument in C

» A polynomial f defining a cubic surface would give a section
or of the vector bundle Sym3S* — Gre(2, 4)

> or(W) = flw
» If a line W is on the surface, then of(W) =0
» Euler class e(Sym3S*) can be computed as
D WeGH2,4),0¢(W)—=0 968w OF
> For C, degy, or = 1, i.e. each line has “weight" 1
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Euler class argument in C

» A polynomial f defining a cubic surface would give a section
or of the vector bundle Sym3S* — Gre(2, 4)

> or(W) = flw
» If a line W is on the surface, then of(W) =0
» Euler class e(Sym3S*) can be computed as
D WeGH2,4),0¢(W)—=0 968w OF
> For C, degy, or = 1, i.e. each line has “weight" 1

> e(Sym3S*) = D WeGH2,4),0¢(W)=0 9€8 W 07 is the exactly the
number of lines on V/(f

Enumerative geometry?  Lines on cubic surfaces over C, R  Lines on cubic surfaces over arbitrary fields  Personal experiences



Euler class argument in C

>

v

A polynomial f defining a cubic surface would give a section
or of the vector bundle Sym3S* — Gre(2, 4)

or(W) = flw

If a line W is on the surface, then o¢(W) =0
Euler class e(Sym3S*) can be computed as

D WeGH2,4),0¢(W)—=0 968w OF

For C, deg\y or =1, i.e. each line has “weight” 1

e(Sym3S*) = D WeGH2,4),0¢(W)=0 9€8 W 07 is the exactly the
number of lines on V/(f

Compute e(Sym3S*) using algebraic topology. This is
independent of the choice of cubic surface!

Lines on cubic surfaces over C, R



Lines on a smooth cubic surface over R: part 1

» In 1858 (Xianfeng 9th year, during the Taiping rebellion),
Swiss mathematician Ludwig Schlafli [Sch58] proved the
number of real lines can be 3,7,15, and 27 depending on

surfaces.
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Lines on a smooth cubic surface over R: part 1

» In 1858 (Xianfeng 9th year, during the Taiping rebellion),
Swiss mathematician Ludwig Schlafli [Sch58] proved the
number of real lines can be 3,7,15, and 27 depending on

surfaces.

(taken from Wiki)
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Lines on a smooth cubic surface over R: part 1

» In 1858 (Xianfeng 9th year, during the Taiping rebellion),
Swiss mathematician Ludwig Schlafli [Sch58] proved the
number of real lines can be 3,7,15, and 27 depending on
surfaces.

g (taken from Wiki)

» [PB07]He was the first to study real cubics, and actually
classified real surfaces, depending on the number of real lines
and real tritangents.
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Lines on a smooth cubic surface over R: part 2

» In 1942 (Minguo ROC 31st year), after leaving the fascist ltaly
for the UK, Beniamino Segre [Seg42] researched real cubic
surfaces, and classified the real lines as hyperbolic and elliptic.
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Lines on a smooth cubic surface over R: part 2

» In 1942 (Minguo ROC 31st year), after leaving the fascist ltaly
for the UK, Beniamino Segre [Seg42] researched real cubic
surfaces, and classified the real lines as hyperbolic and elliptic.

(taken from Wiki)
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Lines on a smooth cubic surface over R: part 2

» In 1942 (Minguo ROC 31st year), after leaving the fascist ltaly
for the UK, Beniamino Segre [Seg42] researched real cubic
surfaces, and classified the real lines as hyperbolic and elliptic.

(taken from Wiki)

> Segre, Benedetti-Silhol[BS95], Okonek—Teleman[OT14],
Finashin—Kharlamov[FK13], Horev—Solomon[HS12] proved the
number of hyperbolic lines minus the number of elliptic lines
is 3.
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A beautiful model of the Clebsch surface

(Taken from Google. | lost my
photo of a similar model taken in the math department of
Universitat Regensburg)
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Euler class argument in R

> e(Sym*S*) = 3 \ecr(2,4),00(W)=0 dEEWOf
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Euler class argument in R

> e(Sym>S*) = 32 weGr(2.4).01(w)—0 dEBW O
» In R, a hyperbolic (resp. elliptic) line W contributes to
degyy or =1 (resp. -1)
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Euler class argument in R

> e(Sym>S*) = 32 weGr(2.4).01(w)—0 dEBW O

» In R, a hyperbolic (resp. elliptic) line W contributes to
degyy or =1 (resp. -1)

> e(Sym3S*) = 3, i.e. the weighted count of real lines remains
constant[Wicl9].
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Motivic homotopy theory

» Russian mathematician Vladimir Voevodsky won the Fields
Medal by solving the Bloch-Kato conjecture with motivic
homotopy theory
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Motivic homotopy theory

» Russian mathematician Vladimir Voevodsky won the Fields
Medal by solving the Bloch-Kato conjecture with motivic
homotopy theory

(ICM 2002, Beijing, picture
taken from Google)
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Motivic homotopy theory

» Russian mathematician Vladimir Voevodsky won the Fields
Medal by solving the Bloch-Kato conjecture with motivic
homotopy theory

(ICM 2002, Beijing, picture

taken from Google)

» A homotopy theory for schemes where Al plays the role of /
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Motivic homotopy theory

» Russian mathematician Vladimir Voevodsky won the Fields
Medal by solving the Bloch-Kato conjecture with motivic
homotopy theory

(ICM 2002, Beijing, picture

taken from Google)
» A homotopy theory for schemes where Al plays the role of /
» After Marc Hoyois's thesis[Hoy15], Marc Levine, and at the
same time, Kirsten Wickelgren and Jesse Kass started to build

Al-enumerative geometry, which takes values in the
Grothendieck-Witt ring GW/ (k)
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Grothendieck-Witt ring

» GW(k) is the Grothendieck group completion of the set of
isometry classes of non-degenerate symmetric bilinear forms

over k, which can be described by generators and relations
[PW21]
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Grothendieck-Witt ring

» GW(k) is the Grothendieck group completion of the set of
isometry classes of non-degenerate symmetric bilinear forms

over k, which can be described by generators and relations
[PW21]

» Generators are rank 1 non-degenerate symmetric bilinear forms

(a) - k x k = k, (x,y)— axy, a€ k*
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Grothendieck-Witt ring

» GW(k) is the Grothendieck group completion of the set of
isometry classes of non-degenerate symmetric bilinear forms

over k, which can be described by generators and relations
[PW21]

» Generators are rank 1 non-degenerate symmetric bilinear forms
(a) - k x k = k, (x,y)— axy, a€ k*

a) = (ab?) for a, b € k*.

a)(b) = (ab) for a,b € k*.

)+ (b) = (a+ b) + (ab(a+ b)) for a,b € k*,a+ b #0.
Y+ (—ay = (1) + (—1) for a € k*.

=
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Grothendieck-Witt ring

» GW(k) is the Grothendieck group completion of the set of
isometry classes of non-degenerate symmetric bilinear forms

over k, which can be described by generators and relations
[PW21]

» Generators are rank 1 non-degenerate symmetric bilinear forms

(a) - k x k = k, (x,y)— axy, a€ k*

> 1. (a) = (ab?) for a,b € k*.
2. (a)(b) = (ab) for a,b € k*.
3. (a) + (b) = (a+ b) + (ab(a+ b)) for a,b € k*,a+ b #0.
4. (a) + (—a) = (1) + (—1) for a € k*.

» GW(C) = Z by taking the rank
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Grothendieck-Witt ring

» GW(k) is the Grothendieck group completion of the set of
isometry classes of non-degenerate symmetric bilinear forms

over k, which can be described by generators and relations
[PW21]

» Generators are rank 1 non-degenerate symmetric bilinear forms

(a) - k x k = k, (x,y)— axy, a€ k*

> 1. (a) = (ab?) for a,b € k*.
2. (a)(b) = (ab) for a,b € k*.
3. (a) 4+ (b) = (a+ b) + (ab(a+ b)) for a,b € k*,a+ b #0.
4. (a)+ (—a) = (1) + (-1) for a € k*.

» GW(C) = Z by taking the rank

)
» GW(R) = Z x Z by taking the rank and signature
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Grothendieck-Witt ring

| 2

v

GW!/(k) is the Grothendieck group completion of the set of
isometry classes of non-degenerate symmetric bilinear forms

over k, which can be described by generators and relations
[PW21]

Generators are rank 1 non-degenerate symmetric bilinear forms
(a) - k x k = k, (x,y)— axy, a€ k*

= (ab?) for a,b € k*.
(b) = (ab) for a, b € k*.

(b) = (a+ b) + (ab(a+ b)) for a,b € k*,a+ b # 0.
(—a) = (1) + (—1) for a € k*.

= 7 by taking the rank

GW(R) = Z x Z by taking the rank and signature

For a separable field extension k C E, we have a map
Tresi: GW(E) — GW(k), B~ Trgji o 3 where

B:V xV — E is a bilinear form.

Lines on cubic surfaces over arbitrary fields



Lines on a smooth cubic surface over arbitrary
fields[KW21]

» Generalize Euler class to AL-Euler class
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Lines on a smooth cubic surface over arbitrary
fields[KW21]

» Generalize Euler class to AL-Euler class

» Traditional degree morphism deg : [S",S"] — Z is replaced by
degfy o:[P"/P"1, P /P"1] — GW(k) [Mor12]
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Lines on a smooth cubic surface over arbitrary
fields[KW21]

» Generalize Euler class to AL-Euler class

» Traditional degree morphism deg : [S",S"] — Z is replaced by
deghy op:[P"/P"1, P7 /P 1] — GW/(k) [Mor12]
» Choose easy surface X = V/(f) to compute[KW21]

e(Sym*S*) = Z Triw)/k(type(W))

WCX
= Y deglyor = 15(1) +12(-1)
WCX
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Lines on a smooth cubic surface over arbitrary
fields[KW21]

» Generalize Euler class to A-Euler class

» Traditional degree morphism deg : [S",S"] — Z is replaced by
deghy op:[P"/P"1, P7 /P 1] — GW/(k) [Mor12]

» Choose easy surface X = V/(f) to compute[KW21]

e(Sym*S*) = Z Triw)/k(type(W))

WCX
= Y deglyor = 15(1) +12(-1)
WCX

» This recovers the C,R cases!
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How did | get to know the program?

| strongly suggest Prof. Liang's webpage. There are many helpful
suggestions and inspiring stories. This is where | first read about
interesting things as a 1st year student. Also | knew the existence

of ALGANT there.
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2017/2018: Autumn semester, SUSTC, Shenzhen
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In Abstract Algebra Lecture notes
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2020-2021: Regensburg

» Pure remote unfortunately
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2020-2021: Regensburg

» Pure remote unfortunately

» | stayed in China for the winter semester, failed to go to
Regensburg for the spring semester
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2020-2021: Regensburg

» Pure remote unfortunately

» | stayed in China for the winter semester, failed to go to
Regensburg for the spring semester

» | paid for nonrefundable accomodation for the spring semester
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2021-2022: Milano

Lines on cubic surfaces over (

11 2021 After the Welcomlng Ceremony in Milano
Enumerative geometry?

m]

5
Lines on cubic surfaces over arbitrary fields

Personal experiences



07.2022: Essen
-

Some participants in this conference are in this photo!
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Thanks

Many thanks again for your attention, to the organizers and to the
ALGANT program.
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