

I came, I saw, and I counted

A line counting story on smooth cubic surfaces

Yaxi ZHU

Supervisor: Paul Arne Østvær

Universität Regensburg & Università degli studi di Milano 2020-2022

Table of Contents

Enumerative geometry?

Lines on cubic surfaces over \mathbb{C}, \mathbb{R}

Lines on cubic surfaces over arbitrary fields

Personal experiences

Enumerative geometry: what is it?

- ▶ Enumerative geometry \approx The Hilbert's 15th Problem

Enumerative geometry: what is it?

- ▶ Enumerative geometry \approx The Hilbert's 15th Problem

- ▶ *Hilbert* [Got]

Enumerative geometry: what is it?

- ▶ Enumerative geometry \approx The Hilbert's 15th Problem

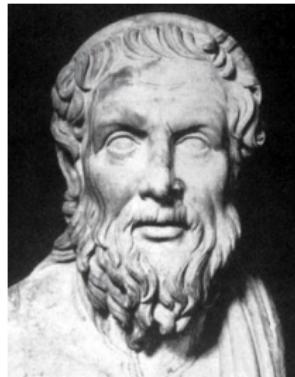
- ▶ *Hilbert* [Got]
- ▶ Schubert calculus needs to be rigorous!

Enumerative geometry: what is it?

- ▶ Enumerative geometry \approx The Hilbert's 15th Problem

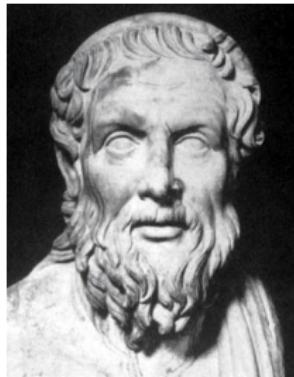
- ▶ *Hilbert* [Got]
- ▶ Schubert calculus needs to be rigorous!
- ▶ Typical question: how many X satisfy condition Y ?

One of the first enumerative problems



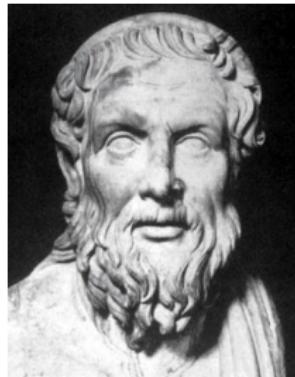
(taken from Wiki)

One of the first enumerative problems



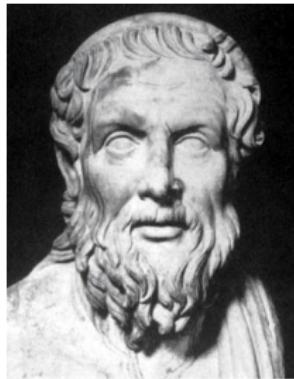
- ▶ (taken from Wiki)
- ▶ Apollonius of Perga (circa 240-190 BC): Given three circles on the plane, how many circles are tangent to them?

One of the first enumerative problems



- ▶ (taken from Wiki)
- ▶ Apollonius of Perga (circa 240-190 BC): Given three circles on the plane, how many circles are tangent to them?
- ▶ 240 BC: Qin Shihuang became the first emperor of China

One of the first enumerative problems



- ▶ (taken from Wiki)
- ▶ Apollonius of Perga (circa 240-190 BC): Given three circles on the plane, how many circles are tangent to them?
- ▶ 240 BC: Qin Shihuang became the first emperor of China
- ▶ 190 BC: Chang'an became the eastern terminus of the Silk Road to Europe.

Typical questions

- ▶ How many points do two lines intersect at?

Typical questions

- ▶ How many points do two lines intersect at?
- ▶ How many points does a line intersect with a conic at?

Typical questions

- ▶ How many points do two lines intersect at?
- ▶ How many points does a line intersect with a conic at?
- ▶ How many lines are there on a smooth cubic surface?

Intersection of a Circle and a Line

- ▶ On \mathbb{R}^2 , there might and might not be, depending on where they are

Intersection of a Circle and a Line

- ▶ On \mathbb{R}^2 , there might and might not be, depending on where they are
- ▶ Not very satisfying: we want a “universal” answer, like the fundamental theorem of algebra!

Intersection of a Circle and a Line

- ▶ On \mathbb{R}^2 , there might and might not be, depending on where they are
- ▶ Not very satisfying: we want a “universal” answer, like the fundamental theorem of algebra!
- ▶ Some extra conditions are required, just like we extend from \mathbb{R} to \mathbb{C} for the fundamental theorem of algebra

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$
- ▶ Discriminant $\Delta >, =, < 0$ respectively give 2,1,0 solutions

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$
- ▶ Discriminant $\Delta >, =, < 0$ respectively give 2,1,0 solutions
- ▶ If we count “multiplicity”, then in the 1-solution case we still have 2 points

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$
- ▶ Discriminant $\Delta >, =, < 0$ respectively give 2,1,0 solutions
- ▶ If we count “multiplicity”, then in the 1-solution case we still have 2 points
- ▶ What if $\Delta < 0$?

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$
- ▶ Discriminant $\Delta >, =, < 0$ respectively give 2,1,0 solutions
- ▶ If we count “multiplicity”, then in the 1-solution case we still have 2 points
- ▶ What if $\Delta < 0$?
- ▶ Allow solutions from \mathbb{C}

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$
- ▶ Discriminant $\Delta >, =, < 0$ respectively give 2,1,0 solutions
- ▶ If we count “multiplicity”, then in the 1-solution case we still have 2 points
- ▶ What if $\Delta < 0$?
- ▶ Allow solutions from \mathbb{C}
- ▶ $x_{1,2} = \frac{-ab \pm \sqrt{\Delta}}{1+a^2}$

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$
- ▶ Discriminant $\Delta >, =, < 0$ respectively give 2,1,0 solutions
- ▶ If we count “multiplicity”, then in the 1-solution case we still have 2 points
- ▶ What if $\Delta < 0$?
- ▶ Allow solutions from \mathbb{C}
- ▶ $x_{1,2} = \frac{-ab \pm \sqrt{\Delta}}{1+a^2}$
- ▶ The coefficients can be complex, so we need to fix the problem when $a^2 \rightarrow -1$

Solution to the “bad” situations

- ▶ Switch to algebra, we plug $y = ax + b$ into $x^2 + y^2 = 1$
- ▶ Discriminant $\Delta >, =, < 0$ respectively give 2,1,0 solutions
- ▶ If we count “multiplicity”, then in the 1-solution case we still have 2 points
- ▶ What if $\Delta < 0$?
- ▶ Allow solutions from \mathbb{C}
- ▶ $x_{1,2} = \frac{-ab \pm \sqrt{\Delta}}{1+a^2}$
- ▶ The coefficients can be complex, so we need to fix the problem when $a^2 \rightarrow -1$
- ▶ Complex projective plane

What about singular conics?

- ▶ Cohomology method: regard the line and the conic as global sections (s_1, s_2) of $\mathcal{O}_{\mathbb{P}^2}(1)$ and $\mathcal{O}_{\mathbb{P}^2}(2)$ over $\mathbb{P}_{\mathbb{C}}^2$

What about singular conics?

- ▶ Cohomology method: regard the line and the conic as global sections (s_1, s_2) of $\mathcal{O}_{\mathbb{P}^2}(1)$ and $\mathcal{O}_{\mathbb{P}^2}(2)$ over $\mathbb{P}_{\mathbb{C}}^2$
- ▶ (s_1, s_2) becomes a section of $\mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2)$ over \mathbb{P}^2

What about singular conics?

- ▶ Cohomology method: regard the line and the conic as global sections (s_1, s_2) of $\mathcal{O}_{\mathbb{P}^2}(1)$ and $\mathcal{O}_{\mathbb{P}^2}(2)$ over $\mathbb{P}_{\mathbb{C}}^2$
- ▶ (s_1, s_2) becomes a section of $\mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2)$ over \mathbb{P}^2
- ▶ Compute the Euler class $e(\mathcal{E})$ of $\mathcal{E} : \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2) \rightarrow \mathbb{P}^2$

What about singular conics?

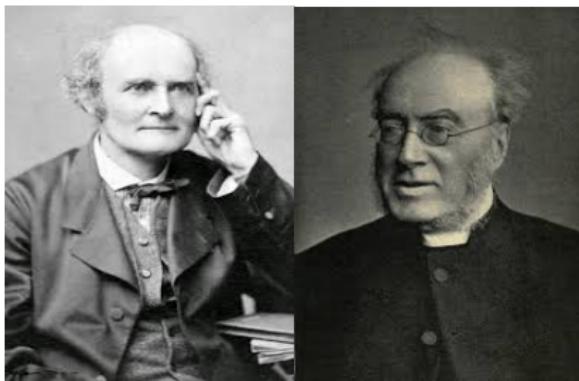
- ▶ Cohomology method: regard the line and the conic as global sections (s_1, s_2) of $\mathcal{O}_{\mathbb{P}^2}(1)$ and $\mathcal{O}_{\mathbb{P}^2}(2)$ over $\mathbb{P}_{\mathbb{C}}^2$
- ▶ (s_1, s_2) becomes a section of $\mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2)$ over \mathbb{P}^2
- ▶ Compute the Euler class $e(\mathcal{E})$ of $\mathcal{E} : \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2}(2) \rightarrow \mathbb{P}^2$
- ▶ This will give us the desired number 2

Lines on a smooth cubic surface over \mathbb{C}

- ▶ In 1849 (Daoguang 29th year), Irish mathematician George Salmon and British mathematician Arthur Cayley [Cay49] worked out that there are 27 lines on every smooth cubic surface over \mathbb{C} .

Lines on a smooth cubic surface over \mathbb{C}

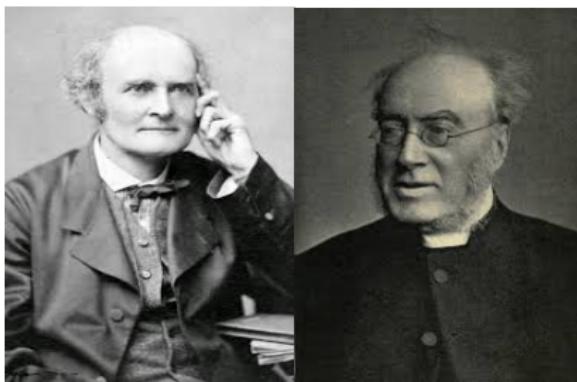
- ▶ In 1849 (Daoguang 29th year), Irish mathematician George Salmon and British mathematician Arthur Cayley [Cay49] worked out that there are 27 lines on every smooth cubic surface over \mathbb{C} .



(taken from Wiki)

Lines on a smooth cubic surface over \mathbb{C}

- ▶ In 1849 (Daoguang 29th year), Irish mathematician George Salmon and British mathematician Arthur Cayley [Cay49] worked out that there are 27 lines on every smooth cubic surface over \mathbb{C} .



(taken from Wiki)

- ▶ [PB07] In the letter to Salmon, Cayley said there could only be finitely many lines on a smooth cubic surface. Then Salmon proved the number 27.

Classical approaches

- ▶ [Gat21] The Fermat cubic $X = V_+(x_0^3 + x_1^3 + x_2^3 + x_3^3) \subseteq \mathbb{P}_{\mathbb{C}}^3$ contains 27 lines, represented by the following matrices

$$\begin{bmatrix} 1 & 0 & 0 & -\omega^i \\ 0 & 1 & -\omega^j & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\omega^i & 0 \\ 0 & 1 & 0 & -\omega^j \end{bmatrix} \begin{bmatrix} 1 & -\omega^i & 0 & 0 \\ 0 & 0 & 1 & -\omega^j \end{bmatrix}$$

Classical approaches

- ▶ [Gat21] The Fermat cubic $X = V_+(x_0^3 + x_1^3 + x_2^3 + x_3^3) \subseteq \mathbb{P}_{\mathbb{C}}^3$ contains 27 lines, represented by the following matrices
$$\begin{bmatrix} 1 & 0 & 0 & -\omega^i \\ 0 & 1 & -\omega^j & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\omega^i & 0 \\ 0 & 1 & 0 & -\omega^j \end{bmatrix} \begin{bmatrix} 1 & -\omega^i & 0 & 0 \\ 0 & 0 & 1 & -\omega^j \end{bmatrix}$$
- ▶ Schubert cell, cellular decomposition, and cohomology

Classical approaches

- ▶ [Gat21] The Fermat cubic $X = V_+(x_0^3 + x_1^3 + x_2^3 + x_3^3) \subseteq \mathbb{P}_{\mathbb{C}}^3$ contains 27 lines, represented by the following matrices
$$\begin{bmatrix} 1 & 0 & 0 & -\omega^i \\ 0 & 1 & -\omega^j & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\omega^i & 0 \\ 0 & 1 & 0 & -\omega^j \end{bmatrix} \begin{bmatrix} 1 & -\omega^i & 0 & 0 \\ 0 & 0 & 1 & -\omega^j \end{bmatrix}$$
- ▶ Schubert cell, cellular decomposition, and cohomology
- ▶ Euler class argument[EH16]

Euler class argument in \mathbb{C}

- ▶ A polynomial f defining a cubic surface would give a section σ_f of the vector bundle $\text{Sym}^3 \mathcal{S}^* \rightarrow \text{Gr}_{\mathbb{C}}(2, 4)$

Euler class argument in \mathbb{C}

- ▶ A polynomial f defining a cubic surface would give a section σ_f of the vector bundle $\text{Sym}^3 \mathcal{S}^* \rightarrow \text{Gr}_{\mathbb{C}}(2, 4)$
- ▶ $\sigma_f(W) := f|_W$

Euler class argument in \mathbb{C}

- ▶ A polynomial f defining a cubic surface would give a section σ_f of the vector bundle $\text{Sym}^3 \mathcal{S}^* \rightarrow \text{Gr}_{\mathbb{C}}(2, 4)$
- ▶ $\sigma_f(W) := f|_W$
- ▶ If a line W is on the surface, then $\sigma_f(W) = 0$

Euler class argument in \mathbb{C}

- ▶ A polynomial f defining a cubic surface would give a section σ_f of the vector bundle $\text{Sym}^3 \mathcal{S}^* \rightarrow \text{Gr}_{\mathbb{C}}(2, 4)$
- ▶ $\sigma_f(W) := f|_W$
- ▶ If a line W is on the surface, then $\sigma_f(W) = 0$
- ▶ Euler class $e(\text{Sym}^3 \mathcal{S}^*)$ can be computed as
$$\sum_{W \in \text{Gr}(2,4), \sigma_f(W)=0} \deg_W \sigma_f$$

Euler class argument in \mathbb{C}

- ▶ A polynomial f defining a cubic surface would give a section σ_f of the vector bundle $\text{Sym}^3 \mathcal{S}^* \rightarrow \text{Gr}_{\mathbb{C}}(2, 4)$
- ▶ $\sigma_f(W) := f|_W$
- ▶ If a line W is on the surface, then $\sigma_f(W) = 0$
- ▶ Euler class $e(\text{Sym}^3 \mathcal{S}^*)$ can be computed as $\sum_{W \in \text{Gr}(2,4), \sigma_f(W)=0} \deg_W \sigma_f$
- ▶ For \mathbb{C} , $\deg_W \sigma_f = 1$, i.e. each line has “weight” 1

Euler class argument in \mathbb{C}

- ▶ A polynomial f defining a cubic surface would give a section σ_f of the vector bundle $\text{Sym}^3 \mathcal{S}^* \rightarrow \text{Gr}_{\mathbb{C}}(2, 4)$
- ▶ $\sigma_f(W) := f|_W$
- ▶ If a line W is on the surface, then $\sigma_f(W) = 0$
- ▶ Euler class $e(\text{Sym}^3 \mathcal{S}^*)$ can be computed as $\sum_{W \in \text{Gr}(2,4), \sigma_f(W)=0} \deg_W \sigma_f$
- ▶ For \mathbb{C} , $\deg_W \sigma_f = 1$, i.e. each line has “weight” 1
- ▶ $e(\text{Sym}^3 \mathcal{S}^*) = \sum_{W \in \text{Gr}(2,4), \sigma_f(W)=0} \deg_W \sigma_f$ is the exactly the number of lines on $V(f)$

Euler class argument in \mathbb{C}

- ▶ A polynomial f defining a cubic surface would give a section σ_f of the vector bundle $\text{Sym}^3 \mathcal{S}^* \rightarrow \text{Gr}_{\mathbb{C}}(2, 4)$
- ▶ $\sigma_f(W) := f|_W$
- ▶ If a line W is on the surface, then $\sigma_f(W) = 0$
- ▶ Euler class $e(\text{Sym}^3 \mathcal{S}^*)$ can be computed as $\sum_{W \in \text{Gr}(2,4), \sigma_f(W)=0} \deg_W \sigma_f$
- ▶ For \mathbb{C} , $\deg_W \sigma_f = 1$, i.e. each line has “weight” 1
- ▶ $e(\text{Sym}^3 \mathcal{S}^*) = \sum_{W \in \text{Gr}(2,4), \sigma_f(W)=0} \deg_W \sigma_f$ is exactly the number of lines on $V(f)$
- ▶ Compute $e(\text{Sym}^3 \mathcal{S}^*)$ using algebraic topology. This is independent of the choice of cubic surface!

Lines on a smooth cubic surface over \mathbb{R} : part 1

- ▶ In 1858 (Xianfeng 9th year, during the Taiping rebellion), Swiss mathematician Ludwig Schläfli [Sch58] proved the number of real lines can be 3, 7, 15, and 27 depending on surfaces.

Lines on a smooth cubic surface over \mathbb{R} : part 1

- ▶ In 1858 (Xianfeng 9th year, during the Taiping rebellion), Swiss mathematician Ludwig Schläfli [Sch58] proved the number of real lines can be 3, 7, 15, and 27 depending on surfaces.

- ▶ (taken from Wiki)

Lines on a smooth cubic surface over \mathbb{R} : part 1

- ▶ In 1858 (Xianfeng 9th year, during the Taiping rebellion), Swiss mathematician Ludwig Schläfli [Sch58] proved the number of real lines can be 3,7,15, and 27 depending on surfaces.

- ▶ (taken from Wiki)
- ▶ [PB07] He was the first to study real cubics, and actually classified real surfaces, depending on the number of real lines and real tritangents.

Lines on a smooth cubic surface over \mathbb{R} : part 2

- ▶ In 1942 (Minguo ROC 31st year), after leaving the fascist Italy for the UK, Beniamino Segre [Seg42] researched real cubic surfaces, and classified the real lines as hyperbolic and elliptic.

Lines on a smooth cubic surface over \mathbb{R} : part 2

- ▶ In 1942 (Minguo ROC 31st year), after leaving the fascist Italy for the UK, Beniamino Segre [Seg42] researched real cubic surfaces, and classified the real lines as hyperbolic and elliptic.

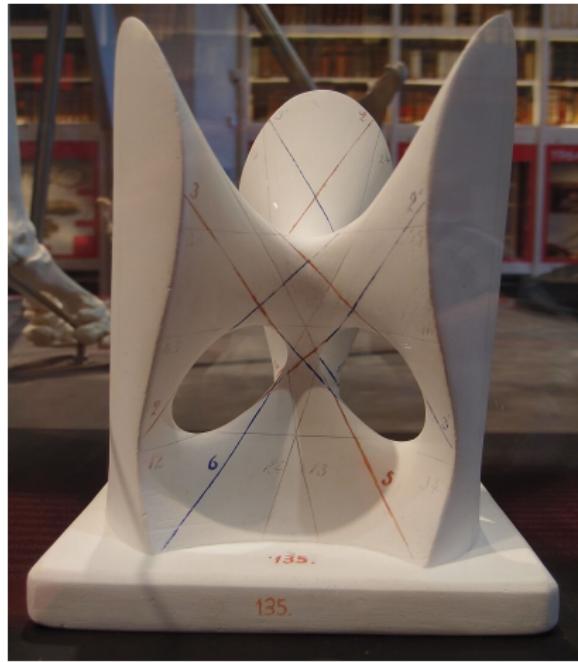
- ▶ (taken from Wiki)

Lines on a smooth cubic surface over \mathbb{R} : part 2

- ▶ In 1942 (Minguo ROC 31st year), after leaving the fascist Italy for the UK, Beniamino Segre [Seg42] researched real cubic surfaces, and classified the real lines as hyperbolic and elliptic.

- ▶ (taken from Wiki)
- ▶ Segre, Benedetti–Silhol[BS95], Okonek–Teleman[OT14], Finashin–Kharlamov[FK13], Horev–Solomon[HS12] proved the number of hyperbolic lines minus the number of elliptic lines is 3.

A beautiful model of the Clebsch surface



(Taken from Google. I lost my photo of a similar model taken in the math department of Universitat Regensburg)

Euler class argument in \mathbb{R}

- ▶ $e(Sym^3 \mathcal{S}^*) = \sum_{W \in Gr(2,4), \sigma_f(W)=0} deg_W \sigma_f$

Euler class argument in \mathbb{R}

- ▶ $e(Sym^3 \mathcal{S}^*) = \sum_{W \in Gr(2,4), \sigma_f(W)=0} \deg_W \sigma_f$
- ▶ In \mathbb{R} , a hyperbolic (resp. elliptic) line W contributes to $\deg_W \sigma_f = 1$ (resp. -1)

Euler class argument in \mathbb{R}

- ▶ $e(Sym^3 \mathcal{S}^*) = \sum_{W \in Gr(2,4), \sigma_f(W)=0} \deg_W \sigma_f$
- ▶ In \mathbb{R} , a hyperbolic (resp. elliptic) line W contributes to $\deg_W \sigma_f = 1$ (resp. -1)
- ▶ $e(Sym^3 \mathcal{S}^*) = 3$, i.e. the weighted count of real lines remains constant[Wic19].

Motivic homotopy theory

- ▶ Russian mathematician Vladimir Voevodsky won the Fields Medal by solving the Bloch-Kato conjecture with motivic homotopy theory

Motivic homotopy theory

- ▶ Russian mathematician Vladimir Voevodsky won the Fields Medal by solving the Bloch-Kato conjecture with motivic homotopy theory

- ▶ (ICM 2002, Beijing, picture taken from Google)

Motivic homotopy theory

- ▶ Russian mathematician Vladimir Voevodsky won the Fields Medal by solving the Bloch-Kato conjecture with motivic homotopy theory

- ▶ (ICM 2002, Beijing, picture taken from Google)
- ▶ A homotopy theory for schemes where \mathbb{A}^1 plays the role of \mathbb{I}

Motivic homotopy theory

- ▶ Russian mathematician Vladimir Voevodsky won the Fields Medal by solving the Bloch-Kato conjecture with motivic homotopy theory

- ▶ (ICM 2002, Beijing, picture taken from Google)
- ▶ A homotopy theory for schemes where \mathbb{A}^1 plays the role of I
- ▶ After Marc Hoyois's thesis [Hoy15], Marc Levine, and at the same time, Kirsten Wickelgren and Jesse Kass started to build \mathbb{A}^1 -enumerative geometry, which takes values in the Grothendieck-Witt ring $GW(k)$

Grothendieck-Witt ring

- ▶ $GW(k)$ is the Grothendieck group completion of the set of isometry classes of non-degenerate symmetric bilinear forms over k , which can be described by generators and relations [PW21]

Grothendieck-Witt ring

- ▶ $GW(k)$ is the Grothendieck group completion of the set of isometry classes of non-degenerate symmetric bilinear forms over k , which can be described by generators and relations [PW21]
- ▶ Generators are rank 1 non-degenerate symmetric bilinear forms

$$\langle a \rangle : k \times k \rightarrow k, (x, y) \mapsto axy, a \in k^\times$$

Grothendieck-Witt ring

- ▶ $GW(k)$ is the Grothendieck group completion of the set of isometry classes of non-degenerate symmetric bilinear forms over k , which can be described by generators and relations [PW21]
- ▶ Generators are rank 1 non-degenerate symmetric bilinear forms

$$\langle a \rangle : k \times k \rightarrow k, (x, y) \mapsto axy, a \in k^\times$$

- ▶
 1. $\langle a \rangle = \langle ab^2 \rangle$ for $a, b \in k^\times$.
 2. $\langle a \rangle \langle b \rangle = \langle ab \rangle$ for $a, b \in k^\times$.
 3. $\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle$ for $a, b \in k^\times, a + b \neq 0$.
 4. $\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle$ for $a \in k^\times$.

Grothendieck-Witt ring

- ▶ $GW(k)$ is the Grothendieck group completion of the set of isometry classes of non-degenerate symmetric bilinear forms over k , which can be described by generators and relations [PW21]
- ▶ Generators are rank 1 non-degenerate symmetric bilinear forms

$$\langle a \rangle : k \times k \rightarrow k, (x, y) \mapsto axy, a \in k^\times$$

- ▶
 1. $\langle a \rangle = \langle ab^2 \rangle$ for $a, b \in k^\times$.
 2. $\langle a \rangle \langle b \rangle = \langle ab \rangle$ for $a, b \in k^\times$.
 3. $\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle$ for $a, b \in k^\times, a + b \neq 0$.
 4. $\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle$ for $a \in k^\times$.
- ▶ $GW(\mathbb{C}) \cong \mathbb{Z}$ by taking the rank

Grothendieck-Witt ring

- ▶ $GW(k)$ is the Grothendieck group completion of the set of isometry classes of non-degenerate symmetric bilinear forms over k , which can be described by generators and relations [PW21]
- ▶ Generators are rank 1 non-degenerate symmetric bilinear forms

$$\langle a \rangle : k \times k \rightarrow k, (x, y) \mapsto axy, a \in k^\times$$

- ▶
 1. $\langle a \rangle = \langle ab^2 \rangle$ for $a, b \in k^\times$.
 2. $\langle a \rangle \langle b \rangle = \langle ab \rangle$ for $a, b \in k^\times$.
 3. $\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle$ for $a, b \in k^\times, a + b \neq 0$.
 4. $\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle$ for $a \in k^\times$.
- ▶ $GW(\mathbb{C}) \cong \mathbb{Z}$ by taking the rank
- ▶ $GW(\mathbb{R}) \cong \mathbb{Z} \times \mathbb{Z}$ by taking the rank and signature

Grothendieck-Witt ring

- ▶ $GW(k)$ is the Grothendieck group completion of the set of isometry classes of non-degenerate symmetric bilinear forms over k , which can be described by generators and relations [PW21]
- ▶ Generators are rank 1 non-degenerate symmetric bilinear forms

$$\langle a \rangle : k \times k \rightarrow k, (x, y) \mapsto axy, a \in k^\times$$

- ▶
 1. $\langle a \rangle = \langle ab^2 \rangle$ for $a, b \in k^\times$.
 2. $\langle a \rangle \langle b \rangle = \langle ab \rangle$ for $a, b \in k^\times$.
 3. $\langle a \rangle + \langle b \rangle = \langle a + b \rangle + \langle ab(a + b) \rangle$ for $a, b \in k^\times, a + b \neq 0$.
 4. $\langle a \rangle + \langle -a \rangle = \langle 1 \rangle + \langle -1 \rangle$ for $a \in k^\times$.
- ▶ $GW(\mathbb{C}) \cong \mathbb{Z}$ by taking the rank
- ▶ $GW(\mathbb{R}) \cong \mathbb{Z} \times \mathbb{Z}$ by taking the rank and signature
- ▶ For a separable field extension $k \subseteq E$, we have a map $Tr_{E/k} : GW(E) \rightarrow GW(k), \beta \mapsto Tr_{E/k} \circ \beta$ where $\beta : V \times V \rightarrow E$ is a bilinear form.

Lines on a smooth cubic surface over arbitrary fields [KW21]

- ▶ Generalize Euler class to \mathbb{A}^1 -Euler class

Lines on a smooth cubic surface over arbitrary fields [KW21]

- ▶ Generalize Euler class to \mathbb{A}^1 -Euler class
- ▶ Traditional degree morphism $\deg : [S^n, S^n] \rightarrow \mathbb{Z}$ is replaced by $\deg_W^{\mathbb{A}^1} \sigma_f : [\mathbb{P}^n/\mathbb{P}^{n-1}, \mathbb{P}^n/\mathbb{P}^{n-1}] \rightarrow GW(k)$ [Mor12]

Lines on a smooth cubic surface over arbitrary fields [KW21]

- ▶ Generalize Euler class to \mathbb{A}^1 -Euler class
- ▶ Traditional degree morphism $\deg : [S^n, S^n] \rightarrow \mathbb{Z}$ is replaced by $\deg_W^{\mathbb{A}^1} \sigma_f : [\mathbb{P}^n/\mathbb{P}^{n-1}, \mathbb{P}^n/\mathbb{P}^{n-1}] \rightarrow GW(k)$ [Mor12]
- ▶ Choose easy surface $X = V(f)$ to compute [KW21]

$$\begin{aligned} e(Sym^3 \mathcal{S}^*) &= \sum_{W \subseteq X} Tr_{k(W)/k}(type(W)) \\ &= \sum_{W \subseteq X} \deg_W^{\mathbb{A}^1} \sigma_f = 15\langle 1 \rangle + 12\langle -1 \rangle \end{aligned}$$

Lines on a smooth cubic surface over arbitrary fields [KW21]

- ▶ Generalize Euler class to \mathbb{A}^1 -Euler class
- ▶ Traditional degree morphism $\deg : [S^n, S^n] \rightarrow \mathbb{Z}$ is replaced by $\deg_W^{\mathbb{A}^1} \sigma_f : [\mathbb{P}^n/\mathbb{P}^{n-1}, \mathbb{P}^n/\mathbb{P}^{n-1}] \rightarrow GW(k)$ [Mor12]
- ▶ Choose easy surface $X = V(f)$ to compute [KW21]

$$\begin{aligned} e(Sym^3 \mathcal{S}^*) &= \sum_{W \subseteq X} Tr_{k(W)/k}(type(W)) \\ &= \sum_{W \subseteq X} \deg_W^{\mathbb{A}^1} \sigma_f = 15\langle 1 \rangle + 12\langle -1 \rangle \end{aligned}$$

- ▶ This recovers the \mathbb{C}, \mathbb{R} cases!

How did I get to know the program?

I strongly suggest Prof. Liang's webpage. There are many helpful suggestions and inspiring stories. This is where I first read about interesting things as a 1st year student. Also I knew the existence of ALGANT there.

《诗经·国风·周南·关雎》

P.2:

关关雎鸠，在河之洲。窈窕淑女，君子好逑。
参差荇菜，左右流之。窈窕淑女，寤寐求之。

求之不得，寤寐思服。悠哉悠哉，辗转反侧。
参差荇菜，左右采之。窈窕淑女，琴瑟友之。
参差荇菜，左右芼之。窈窕淑女，钟鼓乐之。

对，没错，你们现在读《抽象代数讲义》。
谨以此诗诠释中文称谓“辗转相除法”之
诗意。

A most important application of the Euclidean algorithm
is:

Thm(0.2.13) (Bézout's identity) Let $a, b \in \mathbb{Z}$, not both 0.

Bézout 等式
Let $d = \gcd(a, b)$. Then $\exists (u, v) \in \mathbb{Z}^2$ such

that $d = au + bv$.

That is, the gcd of a and b is a \mathbb{Z} -linear combination of a and b .

Proof. Without loss of generality, we may assume $b \neq 0$.
(英文缩写 WLOG, WMA, 中文: 不妨设)

In Abstract Algebra Lecture notes

2020-2021: Regensburg

- ▶ Pure remote unfortunately

2020-2021: Regensburg

- ▶ Pure remote unfortunately
- ▶ I stayed in China for the winter semester, failed to go to Regensburg for the spring semester

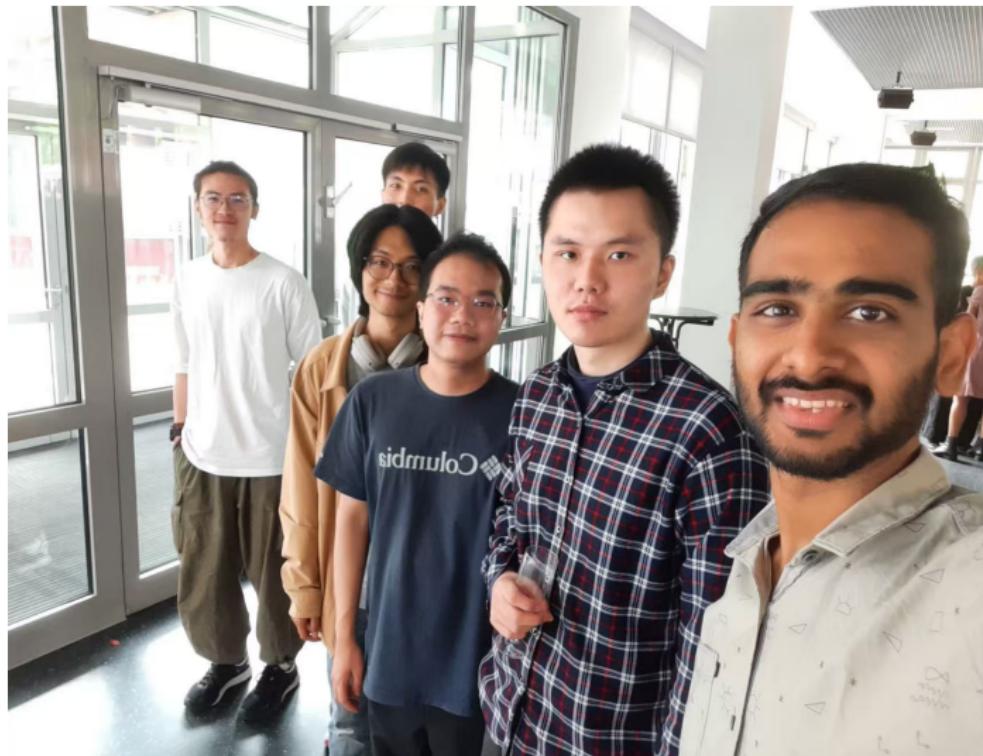
2020-2021: Regensburg

- ▶ Pure remote unfortunately
- ▶ I stayed in China for the winter semester, failed to go to Regensburg for the spring semester
- ▶ I paid for nonrefundable accomodation for the spring semester

2021-2022: Milano

11.2021 After the Welcoming Ceremony in Milano.

07.2022: Essen



Some participants in this conference are in this photo!

Thanks

Many thanks again for your attention, to the organizers and to the ALGANT program.

References I

- R. Benedetti and R. Silhol.
Spin and Pin⁺- structures, immersed and embedded surfaces and a result of Segre on real cubic surfaces.
Topology. An International Journal of Mathematics, 34(3):651–678, 1995.
- Arthur Cayley.
On the triple tangent planes of surfaces of the third order.
Cambridge and Dublin Mathematical Journal, 4:118–132, 1849.
- David Eisenbud and Joe Harris.
3264 and all that: A second course in algebraic geometry.
Cambridge University Press, 2016.

References II

- Sergey Finashin and Viatcheslav Kharlamov.
Abundance of Real Lines on Real Projective Hypersurfaces.
International Mathematics Research Notices,
2013(16):3639–3646, 2013.
- Andreas Gathmann.
Algebraic geometry.
2021.
- Universitat Gottingen.
Hilberts mathematische probleme.
- Marc Hoyois.
A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula.
Algebraic & Geometric Topology, 14(6):3603–3658, January 2015.

References III

- [Asaf Horev and Jake P. Solomon.](#)
The open Gromov-Witten-Welschinger theory of blowups of the projective plane, October 2012.
[arXiv:1210.4034 \[math\]](https://arxiv.org/abs/1210.4034).
- [Jesse Leo Kass and Kirsten Wickelgren.](#)
An arithmetic count of the lines on a smooth cubic surface.
Compositio Mathematica, 157(4):677–709, apr 2021.
- [Fabien Morel.](#)
A1-algebraic topology over a field, volume 2052.
Springer, 2012.
- [Christian Okonek and Andrei Teleman.](#)
Intrinsic signs and lower bounds in real algebraic geometry.
Journal für die reine und angewandte Mathematik (Crelles Journal), 2014(688), jan 2014.

References IV

Irene Polo-Blanco.

Theory and history of geometric models.

PhD thesis, University of Groningen, 2007.

date_submitted:2007 Rights: Irene Polo-Blanco.

Sabrina Pauli and Kirsten Wickelgren.

Applications to \mathbb{A}^1 -enumerative geometry of the \mathbb{A}^1 -degree.

Research in the Mathematical Sciences, 8(2), apr 2021.

Ludwig Schläfli.

An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface.

The quarterly journal of pure and applied mathematics, 1858.

References V

- B. Segre.
The Non-singular Cubic Surfaces.
Oxford University Press, Oxford, 1942.
- Kirsten Wickelgren.
Arizona winter school: \mathbb{A}^1 -enumerative geometry, 2019.