

Equivariant Chen-Ruan cohomology of orbifolds and Ruan's conjecture

Qike Li

Supervisors: Prof. Fabio Perroni (Università degli Studi di Trieste)
Prof. Barbara Fantechi (SISSA)

28 December 2025

1 Chen-Ruan cohomology of orbifolds

2 Equivariant Chen-Ruan cohomology of orbifolds

3 The symplectic case and the equivariant Ruan's conjecture

Chen-Ruan cohomology of a global quotient by a finite group

\mathcal{X} is a global quotient of a complex variety Y by a finite group G , i.e., $\mathcal{X} = [Y/G]$ is the quotient orbifold which is a Deligne-Mumford stack.

Definition (Chen-Ruan cohomology)

As a vector space, $H_{CR}^*(\mathcal{X}) = \bigoplus_{[g] \in T} H^*(Y^g)^{C(g)}$, where T is the

set of all conjugacy classes of G , Y^g is the g -invariant submanifold of Y and $C(g) \subset G$ is the centralizer of $g \in G$.

$H_{CR}^*(\mathcal{X})$ can be equipped with a triple pairing $\langle \gamma_1, \gamma_2, \gamma_3 \rangle$ for $\gamma_i \in H^*(Y^{g_i})^{C(g_i)}$. This triple pairing defines a product by requiring that $\langle \gamma_1 \gamma_2, \gamma_3, I_Y \rangle = \langle \gamma_1, \gamma_2, \gamma_3 \rangle$, where $I_Y \in H^*(Y)$ is the fundamental class of Y .

An equivalent definition

Instead of the original definition, we will focus on an equivalent definition proposed by Barbara Fantechi and Lothar Göttsche.

Definition

The vector space $H^*(Y, G)$ is defined as:

$$H^*(Y, G) := \bigoplus_{g \in G} H^*(Y^g)$$

For $g \in G$ and $\alpha \in H^*(Y, G)$, denote by $\alpha_g \in H^*(Y^g)$ the g -th direct summand of α .

Remark: G has an action over $H^*(Y, G)$: For $g, h \in G$, an left action by h induces an isomorphism $h : Y^g \rightarrow Y^{hgh^{-1}}$. Then h induces an isomorphic push-forward of cohomology classes $h_* : H^*(Y^g) \rightarrow H^*(Y^{hgh^{-1}})$

We define $h(\alpha_g) := (h_* \alpha_g)_{hgh^{-1}}$.

Age and Grading

Definition

Let Y be a manifold of dimension D with an action of a finite group G . For $g \in G$ and $y \in Y^g$, let $\lambda_1, \dots, \lambda_D$ be the eigenvalues of the tangent map $T_g : T_{Y,y} \rightarrow T_{Y,y}$.

Write $\lambda_i = e^{2\pi i r_j}$, where r_j is a rational number within $[0, 1)$. The age of g in y is defined as the rational number $a(g, y) := \sum_{j=1}^D r_j$.

Remark: $a(g, y)$ only depends on the connected component of Z of Y^g in which y lies.

Definition

We define a rational grading on $H^*(Y, G)$ as follows: Let $g \in G$ and Z be a connected component of Y^g and $j : Z \hookrightarrow Y^g$ the inclusion. For $\alpha \in H^i(Z)$, $j_*\alpha$ has degree $i + 2a(g, Z)$.

Cup product

Definition

Define a bilinear map $\mu : H^*(Y, G) \times H^*(Y, G) \rightarrow H^*(Y, G)$ as follows: For $\alpha \in H^*(Y^g)$ and $\beta \in H^*(Y^h)$

$$\mu(\alpha, \beta) := i_*(\alpha|_{Y^{g,h}} \cdot \beta|_{Y^{g,h}} \cdot c(g, h))$$

where $i : Y^{g,h} \rightarrow Y^{gh}$ is the natural inclusion, $\alpha|_{Y^{g,h}}$, $\beta|_{Y^{g,h}}$ are the pull-backs of cohomology classes, and $c(g, h)$ is given by the top Chern class of a vector bundle $F(g, h)$ on $Y^{g,h}$.

Remark: It has been verified that μ preserves the grading in the previous definition. Moreover, μ is associative. Therefore, $H^*(Y, G)$ is a graded ring.

Orbifold cohomology

Definition

The orbifold cohomology of the orbifold $[Y/G]$ is the graded ring:

$$H_o^*([Y/G]) := H^*(Y, G)^G$$

i.e., the G -invariant part of $H^*(Y, G)$.

Remark: The new definition by Fantechi and Göttsche agrees with the original definition given by Chen and Ruan. We can also write the orbifold cohomology defined above as $H_{CR}^*([Y/G])$.

Now we can state a particular version of Ruan's conjecture.

Conjecture: Let Y be a complex variety with an action of a finite group G . $\mathcal{X} = [Y/G]$ is the quotient orbifold and a projective variety Z is a crepant resolution of singularities of Y/G .

It is conjectured that the orbifold cohomology of \mathcal{X} coincides with the small quantum cohomology of Z as a ring.

1 Chen-Ruan cohomology of orbifolds

2 Equivariant Chen-Ruan cohomology of orbifolds

3 The symplectic case and the equivariant Ruan's conjecture

\mathbb{C}^* -equivariant orbifold cohomology

A \mathbb{C}^* -action on a stack \mathcal{X} naturally induces a \mathbb{C}^* -action on \mathcal{IX} , the inertia stack of \mathcal{X} . The \mathbb{C}^* -equivariant Chen-Ruan cohomology of \mathcal{X} , $H_{CR, \mathbb{C}^*}^*(\mathcal{X})$ is defined as follows:

$$H_{CR, \mathbb{C}^*}^*(\mathcal{X}) \simeq H_{\mathbb{C}^*}^*(\mathcal{IX})$$

as a vector space with the grading shifted by the age as before, and the cup product deformed by an "equivariant version" of the Chern class $c(g, h)$.

- 1 Chen-Ruan cohomology of orbifolds
- 2 Equivariant Chen-Ruan cohomology of orbifolds
- 3 The symplectic case and the equivariant Ruan's conjecture

Symplectic case

We now focus on a particular case when $Y = V \simeq \mathbb{C}^{2n}$ is a symplectic vector space, i.e., V is equipped with a non-degenerate skew-symmetric bilinear form $\omega \in \Lambda^2 V^*$ and $G \subset Sp(V)$ is a finite subgroup of the group of symplectic isomorphisms.

By the previous discussions on \mathbb{C}^* -equivariant case,

$$\begin{aligned}
 H_{CR, \mathbb{C}^*}^*([Y/G]) &\simeq H_{CR}^*([(Y \times_{\mathbb{C}^*} \mathbb{E}\mathbb{C}^*)/G]) \simeq \left(\bigoplus_{g \in G} H^*((Y \times_{\mathbb{C}^*} \mathbb{E}\mathbb{C}^*)^g) \right)^G \\
 &\simeq \left(\bigoplus_{g \in G} H^*(Y^g \times_{\mathbb{C}^*} \mathbb{E}\mathbb{C}^*) \right)^G \simeq \left(\bigoplus_{g \in G} H_{\mathbb{C}^*}^*(Y^g) \right)^G
 \end{aligned} \tag{1}$$

Notice that Y^g is a sub-vector space of Y and thus contractible.

$H_{\mathbb{C}^*}^*(Y^g) \simeq H_{\mathbb{C}^*}^*(\{\bullet\}) \simeq H^*(\mathbb{CP}^\infty) \simeq \mathbb{C}[\lambda]$, i.e., a polynomial ring generated by one element $\lambda \in H^2(\mathbb{CP}^\infty)$.

the structure of the \mathbb{C}^* equivariant Chen-Ruan cohomology

Therefore, $H_{CR, \mathbb{C}^*}^*([Y/G]) \simeq (\bigoplus_{g \in G} \mathbb{C}[\lambda])^G \simeq \mathbb{C}[\lambda] \otimes_{\mathbb{C}} (\bigoplus_{g \in G} 1_g)^G \simeq \mathbb{C}[\lambda] \otimes_{\mathbb{C}} Z[G]$, where $Z[G]$ is the center of the group algebra $\mathbb{C}[G]$, because G acts over $\bigoplus_{g \in G} 1_g = \mathbb{C}[G]$ by conjugation.

It is clear that $\mathbb{C}[\lambda] \otimes_{\mathbb{C}} Z[G]$ is a subalgebra of $\mathbb{C}[\lambda] \otimes_{\mathbb{C}} \mathbb{C}[G]$. We define the grading and cup product on the latter and then restrict it to $H_{CR, \mathbb{C}^*}^*([Y/G])$.

The grading of $\lambda^t \otimes 1_g$ is defined as $2t + 2a(g)$ (In this particular case, the age $a(g, y)$ does not depend on $y \in Y^g$, thus we just write $a(g, y)$ as $a(g)$).

The cup product of $H_{CR, \mathbb{C}^*}^*([Y/G])$ is given by

$(\lambda^{t_1} \otimes 1_g) \cup (\lambda^{t_2} \otimes 1_h) = c(g, h) \lambda^{t_1+t_2} \otimes 1_{gh}$ where $c(g, h)$ is simply a number. $c(g, h) = 1$ if and only if $a(g) + a(h) = a(gh)$ and $c(g, h) = 0$ otherwise.

Ruan's conjecture in the equivariant case

Now we have already described the structure of \mathbb{C}^* -equivariant Chen-Ruan cohomology of the orbifold $\mathcal{X} = [Y/G]$.

Naturally, we want to know what Ruan's conjecture will inspire us in the equivariant case. We may try to find a relation between the \mathbb{C}^* -equivariant Chen-Ruan cohomology of the orbifold \mathcal{X} computed above and the equivariant quantum cohomology of the crepant resolution of the singular variety Y/G .

Figure 1: A photo with Zhenghang Du and Yufan Ge at Leiden

Thank you for your attention!