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Canonical height function
Theorem
Let K be a number field. Let (X , f , L) be a triple called algebraic
dynamical system, where:

X is a projective variety over K,
f : X → X is a morphism over K,
L is a line bundle on X such that f ∗L ≃ qL for some integer
q > 1.

We have the canonical height function

ĥL : X (K ) −→ R

defined by
ĥL(x) = lim

n→∞
1
qn hL

(
f n(x)

)
,

where hL : X (K ) → R is any Weil height associated to L.
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Néron-Tate Height on Abelian Varieties

Definition
On an abelian variety A over a number field K , we have a
canonical algebraic dynamical system. Then we can define the
associated canonical height.
Suppose L is a line bundle on A:
If L is symmetric, we define

ĥL(x) = lim
n→∞

1
4n hL

(
2nx

)
, x ∈ A(K )

If L is anti-symmetric, we define

ĥL(x) = lim
n→∞

1
2n hL

(
2nx

)
, x ∈ A(K )
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Néron-Tate Height on Abelian Varieties
In general, we define

ĥL = 1
2

(
ĥL+[−1]∗L + ĥL−[−1]∗L

)
For projective curves over number field, we have the Abel–Jacobi
morphism jα : XK −→ JK , x 7→ x − α, where α is a line bundle of
degree 1. Then we can define the θ divisor θα associate to α, and
the ample symmetric line bundle Θ := O (θα + [−1]∗θα)
Let denote the canonical height of Θ by ĥΘ.

Definition
The Néron–Tate height ĥ : Pic0(XK ) → R is defined as

1
2 ĥΘ : J(K ) → R
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Bogomolov Conjecture for Curves

Theorem (Ullmo 1998)
Let C be a smooth projective curve of genus g > 1 over Q. Then
for any divisor α on C of degree 1, there is a constant c > 0 such
that

#{x ∈ C(Q) : ĥ(x − α) ≤ c} < ∞
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Bogomolov Conjecture in General

Theorem (Zhang 1998)
Let A be an abelian variety over a number field K, and let L be a
symmetric and ample line bundle on A. Let X be a closed
subvariety of AK̄ . Then the following statements are equivalent:

1 X is the translation of an abelian subvariety of AK̄ by a
torsion point;

2 For any ϵ > 0, the set
{

x ∈ X (K̄ ) : ĥL(x) < ϵ
}

is Zariski
dense in X.
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Uniform Bogomolov Result

Theorem (Dimitrov–Gao– Habegger 2021 ; Yuan 2021)
Let g > 1, then there are constants c1, c2 > 0 depending only on g
satisfying the following properties.
Let K be a number field. Then for any geometrically integral,
smooth and projective curve C of genus g over K, and for any line
bundle α ∈ Pic(CK ) of degree 1, one has:

#
{
x ∈ C(K ) : ĥ(x − α) ≤

c1 max{hFal(C), 1} + ĥ((2g − 2)α − ωC/K )
}

≤ c2.

Here, hFal(C) is the Faltings height of curves, which is defined by
h∗

Fal(A) := 1
[K :Q] deg(ω̂A) , where ω̂A is Hodge line bundle with

Faltings metric.
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Uniformal Mordell Conjecture

Theorem (Kühne 2021)
There is a constant c depending only on g ≥ 2 such that for every
smooth projective curve C of genus g over a number field K, the
number of K-rational points in C is bounded by c r+1, where r is
the rank of J(K ) for the Jacobian J of C.

Remark that the number of large points is bounded by Mumford’s
gap principle and Vojta’s theorem. For points with small height,
we apply uniformal Bogomolov theory.
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Positive property

Definition
Let X be a projective variety over a field k. A line bundle L on X
is nef (or numerically effective) if L · C ≥ 0 for any closed integral
curve C ⊂ X .

Definition
Let L be a line bundle on X . The volume of L on X is defined to
be

vol(L) = lim sup
n→∞

d!
nd h0(X , nL),

where d = dim X . We say that L is big if vol(L) > 0.
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We can generalize these definition to adelic line bundle define on a
quasi-projective scheme.In particular,

Definition
Let k be either Z or a field. Let U be a quasi-projective and flat
integral scheme over k.Let χ be a projective model of U over k.
The group of model adelic divisors is defined by the direct limit

D̂iv(U/k)mod = lim−→
χ

D̂iv(χ, U),

where for each projective model χ of U, we set

D̂iv(χ, U) = D̂iv(χ)Q ×Div(U)Q Div(U)

Choose the topologe on D̂iv(U/k)mod induced by boundary
normal, the we can consider complete space.
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Definition
Let D̂iv(U/k) be the completion of D̂iv(U/k)mod with respect to
the boundary topology. An element of D̂iv(U/k) is called an
adelic divisor on U/k.

Definition
Similarly, we can define the adelic line bundles for quasi-projective
scheme. Let P̂ic(X ) denote the category of hermitian line bundles
on X , and let P̂ic(X )Q be the category of hermitian Q-line bundles
on X .
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positive property

Definition
An adelic divisor is called effective if it is equal to a limit of
effective arithmetic divisors. An adelic line bundle is called effective
if it is the image of an effective adelic divisor.

Definition
For an adelic line bundle L (resp. adelic divisor D):

Strongly nef: L ∼= lim Ln (resp. D = lim Dn) with Ln (resp.
Dn) nef.
Nef: ∃ strongly nef M such that aL + M (resp. aD + M) is
strongly nef ∀a > 0.
Integrable: L ∼= M1 − M2 (resp. D = M1 − M2) with
M1, M2 strongly nef.
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Arithmetic bigness

Definition (Volume)
For L an adelic line bundle on U, define:

vol(Û, L) = lim
m→∞

d!
md ĥ0(U, mL)

where d = dim U.

Theorem (Yuan,Zhang 2021)
This limit always exists.

Definition (Big)

L is big if vol(Û, L) > 0.
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Arithmetic bigness

Theorem (Hilbert–Samuel formula), [Yuan, Zhang 2021)
If L is nef, then:

vol(Û, L) = Ld

Corollary
For nef L:

L is big ⇐⇒ Ld
> 0
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Admissable adelic line bundle

Let k be either Z or a field. Let S be a quasi-projective and flat
normal integral scheme over k. Let π : X → S be a smooth
relative curve over S of genus g > 1. Let ωX/S be the relative
dualizing sheaf, and ∆ ⊂ X 2/S be the diagonal divisor.
Then Yuan proves that there exist a canonical admissible adelic
line bundle satisfies some nice properties, which generalize Zhang’s
works on projective case.
Let denote the canonical admissible adelic line bundle on X
extending ωX/S by ω̄X/S,a and denote canonical admissible adelic
line bundle on X 2/S extending O(∆) by Ō(∆)a .
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Main theory: arithmetic bigness

Theorem (Yuan 2021)
Let k be either Z or a field. Let S be a quasi-projective and flat
normal integral scheme over k. Let π : X → S be a smooth
relative curve over S of genus g > 1 with maximal variation. Then
the admissible canonical bundle ω̄X/S,a is nef and big on X.

Recall that a relative curve π : X → S has maximal variation if the
moduli morphism S → Mg ,k is generically finite.
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