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GAGA: complex case

(1) GAGA functor. Let X be a finite type C-scheme.
We can define the analytification functor

(·)an : (finite type C-schemes) −→ (complex analytic spaces), X 7−→ X an,

which sends a variety over C to its associated complex analytic space.

Theorem
If X is a projective variety over C, then the analytification functor
induces

▶ an equivalence of categories

Coh(X ) ≃ Coh(X an),

▶ and for every coherent sheaf F on X ,

H i (X ,F) ∼= H i (X an,Fan) for all i ≥ 0.



GAGA: rigid analytic case

(1) Rigid analytification functor. Let K be a non-archimedean field
and let X be a finite type K -scheme.
One can define the rigid analytification functor

(·)rig : (finite type K -schemes) −→ (rigid analytic spaces over K ),X 7−→ X rig,

which associates to X a rigid analytic space.

Theorem
If X is a projective K-scheme, then the rigid analytification functor
induces

▶ an equivalence of categories

Coh(X ) ≃ Coh(X rig),

▶ and for every coherent sheaf F on X ,

H i (X ,F) ∼= H i (X rig,F rig) for all i ≥ 0.



Rigid analytic spaces

Definition (Rigid analytic spaces). Let K be a non-archimedean field.

▶ A K-affinoid algebra is a Banach K -algebra which plays the role of
a ring of analytic functions over a non-archimedean field.

▶ An affinoid rigid space is the spectrum

Sp(A)

of maximal ideals of a K -affinoid algebra A, equipped with its
Grothendieck topology and structure sheaf.

▶ A rigid analytic space over K is a G-space which is locally
isomorphic to affinoid rigid spaces, i.e. it admits an admissible
covering by spaces of the form Sp(A).



Berkovich spaces: topological improvement

To deal with the topological issues of rigid analytic spaces, Berkovich
introduced a new notion of non-archimedean analytic spaces.

▶ A Berkovich space is defined by enlarging the set of points: points
correspond to multiplicative seminorms on affinoid algebras, rather
than maximal ideals.

▶ As a result, Berkovich spaces carry a genuine topology. For
example, for a K -affinoid algebra A, the Berkovich spectrumM(A)
is Hausdorff and compact.

Philosophical comparison.

▶ Rigid analytic spaces make the function theory work correctly.

▶ Berkovich spaces make the topology work correctly.



Formal schemes: infinitesimal geometry

Motivation (infinitesimal behavior). Formal schemes are introduced to
systematically encode infinitesimal neighborhoods.

▶ Example: the quotient
k[x ]/(xn)

describes the local behavior of the affine line Speck[x ] near the
point 0 up to order n.

▶ Passing to all orders suggests the formal limit

lim←−
n

k[x ]/(xn),

which should be thought of as the ring of functions on the formal
neighborhood of 0. (This is intuition rather than the definition.)



Formal Schemes

Definition (affine formal scheme). Let A be a ring and let
I ⊂ A be an ideal. Assume that A is I -adically complete and
separated, i.e.

A ∼= lim←−
n

A/I n.

Then the affine formal scheme associated to (A, I ) is

Spf(A),

whose underlying topological space is Spec(A/I ) and whose
structure sheaf is obtained by I -adic completion on basic opens.



Formal GAGA

Theorem
Let X be a projective scheme over a noetherian ring A, and let I ⊂ A be
an ideal. Denote by X̂ the formal completion of X along I .
Then the completion functor induces an equivalence of categories

Coh(X ) ≃ Coh(X̂ ),

and for every coherent sheaf F on X , the natural map

H i (X ,F) ∼= H i (X̂ , F̂) for all i ≥ 0

is an isomorphism.



Adic spaces

Huber rings. A Huber ring is a topological ring A admitting an open
subring A0 ⊂ A such that

▶ the topology on A0 is I -adic for some finitely generated ideal I ,

▶ the topology on A is induced from that of A0.

Affinoid pairs. An affinoid pair is a pair (A,A+), where A is a Huber
ring and A+ ⊂ A is an open, integrally closed subring.

The adic spectrum. To an affinoid pair (A,A+) one associates the adic
spectrum Spa(A,A+), whose points are equivalence classes of continuous
valuations on A bounded by 1 on A+.



Adic Spaces

On Spa(A,A+) one can define presheaves

OX and O+
X ,

which in most well-behaved situations are in fact sheaves.

Adic spaces. An affinoid adic space is the space Spa(A,A+) for
affinoid pair (A,A+) with OX a sheaf.
An adic space is a space which is locally affinoid adic.1

1Here we should consider an adic space in a category (V ) with object be a
space together with a sheaf OX and a family of valuation information {vx}



Adic spaces

Theorem (Huber)
Adic spaces provide a common framework for rigid analytic geometry and
formal geometry via fully faithful embeddings.

▶ There exists a fully faithful functor

rK : (rigid analytic spaces over K ) −→ (adic spaces),

which sends Sp(A) to Spa(A,A◦).

▶ There exists a fully faithful functor

t : (locally noetherian formal schemes) −→ (adic spaces),

which sends Spf(A) to Spa(A,A).

In this sense, adic spaces simultaneously generalize rigid analytic spaces
and formal schemes.



Why adic spaces?

From rigid analytic geometry.

▶ The category of rigid analytic spaces does not admit well-behaved
inverse limits.

▶ As a consequence, constructions such as perfectoid spaces can only
live in adic spaces.

From formal geometry.

▶ A formal scheme describes an infinitesimal neighborhood of a point
or a closed subscheme. However, they do not carry genuine analytic
neighborhoods.

▶ Adic spaces provide a geometric realization of these formal
neighborhoods, interpolating between formal and analytic geometry.



Perfectoid Spaces

Perfectoid rings. Let K be a perfectoid field. A Huber pair (R,R+) is
called a perfectoid affinoid K-algebra if

▶ R is a complete uniform Tate K -algebra,

▶ the Frobenius map
φ : R◦/p −→ R◦/p

is surjective.

Perfectoid spaces. A perfectoid space is an adic space which is locally
isomorphic to Spa(R,R+) for some perfectoid affinoid K -algebra
(R,R+).



Tilting

Definition (Tilt of a perfectoid ring). Let (R,R+) be a perfectoid
affinoid K -algebra. The tilt of R is defined as

R♭ := lim←−
x 7→xp

R,

with ring structure induced from R. The subring

R♭+ := lim←−
x 7→xp

R+

defines a perfectoid affinoid algebra (R♭,R♭+) over the tilt K ♭.



Tilting equivalence

Theorem

1. The tilting construction induces an equivalence of categories
{K-Perfd} ≃ {K ♭-Perfd}.

2. Let X = Spa(R,R+) be a perfectoid adic space. Then its tilt
X ♭ := Spa(R♭,R♭+) is a perfectoid space over K ♭, and the
assignment X 7−→ X ♭ induces an equivalence of categories
between perfectoid spaces over K and over K ♭.
Moreover, X and X ♭ are homeomorphic and have canonically
identified rational subsets.



An important example: the Fargues–Fontaine curve

Untilts. Let F be a perfectoid field of characteristic p. An untilt of F is
a perfectoid field K of characteristic 0 together with an identification

K ♭ ∼= F .

The ring Ainf . Let OF be the ring of integers of F . Set

Ainf := W (OF ).

For suitable distinguished elements ξ ∈ Ainf (defined so that they cut out
untilts), one obtains a precise bridge between untilts and quotients of
Ainf .



Fargues-Fontaine Curves

Theorem
Let F be a perfectoid field of characteristic p. Then the assignment

ξ 7−→ Frac
(
Ainf/(ξ)

)
induces a bijection

({distinguished elements of Ainf}/A×
inf)
∼= ({untilts of F}/ ∼=).

Heuristic picture. For untilts C of F , |p|C varies from 0 to 1. We
would like to use this to parametrize

Y := ({untilts of F}/ ∼=)

as the unit disk.



Fargues-Fontaine Curves
A holomorphic function on the punctured unit disk can be written as a
Laurent series

∑
n≥−k cnz

n satisfying the growth conditions

lim sup
n→∞

|cn|1/n ≤ 1, lim sup
n→∞

|c−n|1/n = 0.

A p-adic analogue. Fix ϖ ∈ OF with 0 < |ϖ| < 1 and write [ϖ] ∈ Ainf

for its Teichmüller lift. Inside

Ainf

[1
p
,

1

[ϖ]

]
=

 ∑
n≥−k

[cn] p
n

∣∣∣∣∣∣ (cn) ⊂ F bounded

 ,

one enlarges to a ring B such that whenever an element admits an
expansion ∑

n≥−k

[cn] p
n,

the coefficients satisfy the same type of growth conditions:

lim sup
n→∞

|cn|1/n ≤ 1, lim sup
n→∞

|c−n|1/n = 0.

We think of B as a ring of holomorphic functions on a space Y .



Fargues-Fontaine Curves

Definition (Fargues–Fontaine curve). Let φ denote Frobenius
on B. Define

XF := Proj

⊕
n≥0

Bφ=pn

 .

This is the (schematic) Fargues–Fontaine curve.



Fargues-Fontaine Curves

The Fargues–Fontaine curve behaves in many ways like a complete
algebraic curve (of genus 0 in some sense). For example:

▶ The cohomology group H1(XF ,OXF
) vanishes.

▶ Degree formula (no “missing points”): for any rational function f
on XF , ∑

x∈XF

degx(f ) = 0.

▶ Vector bundles on XF admit a canonical Harder–Narasimhan
filtration (and are governed by slopes, as for bundles on curves), i.e.,

Theorem
Then every vector bundle E on XF is isomorphic to a vector bundle of the
form

E ∼=
r⊕

i=1

OXF
(λi ),

where λ1 ≥ λ2 ≥ · · · ≥ λr are rational numbers.
Moreover, the multiset {λi} is uniquely determined by E .



The Fargues–Fontaine Curves

Let E be a finite extension over Qp with uniformizer π.

The space YF ,E . Let W (OF ) denote the ring of Witt vectors of OF ,
and set

WOE
(OF ) := W (OF )⊗W (Fq) OE .

One defines an adic space

YF ,E := Spa
(
WOE

(OF )
)
\ {|π| = 0},

which can be covered by suitable rational subsets. The Frobenius induces
an automorphism

φ : YF ,E −→ YF ,E .

Definition The adic Fargues–Fontaine curve is defined as the quotient

XF ,E := YF ,E/φ
Z.



Fargues-Fontaine Curves

When E = Qp, the adic Fargues–Fontaine curve XF ,E is
canonically isomorphic to the adic analytification of the schematic
Fargues–Fontaine curve XF constructed earlier.



Gal(Qp) as a fundamental group

Let E be a p-adic field.

Theorem
One can construct an object ZE in the pro-étale site of PerfC , such that
the category of finite étale covers of ZE is equivalent to the category of
finite étale E-algebras. Equivalently,

πét
1 (ZE ) ∼= Gal(E/E ).

In this way, arithmetic Galois groups arise as fundamental groups of
geometric objects in characteristic p-adic geometry.



Thank you.


