

An introduction to p-adic geometry

Shenguanlin Lin

December 2025

GAGA: complex case

(1) GAGA functor. Let X be a finite type \mathbb{C} -scheme.

We can define the analytification functor

$$(\cdot)^{\text{an}} : (\text{finite type } \mathbb{C}\text{-schemes}) \longrightarrow (\text{complex analytic spaces}), \quad X \longmapsto X^{\text{an}},$$

which sends a variety over \mathbb{C} to its associated complex analytic space.

Theorem

If X is a projective variety over \mathbb{C} , then the analytification functor induces

- ▶ *an equivalence of categories*

$$\text{Coh}(X) \simeq \text{Coh}(X^{\text{an}}),$$

- ▶ *and for every coherent sheaf \mathcal{F} on X ,*

$$H^i(X, \mathcal{F}) \cong H^i(X^{\text{an}}, \mathcal{F}^{\text{an}}) \quad \text{for all } i \geq 0.$$

GAGA: rigid analytic case

(1) Rigid analytification functor. Let K be a non-archimedean field and let X be a finite type K -scheme.

One can define the rigid analytification functor

$$(\cdot)^{\text{rig}} : (\text{finite type } K\text{-schemes}) \longrightarrow (\text{rigid analytic spaces over } K), X \longmapsto X^{\text{rig}},$$

which associates to X a rigid analytic space.

Theorem

If X is a projective K -scheme, then the rigid analytification functor induces

- ▶ *an equivalence of categories*

$$\text{Coh}(X) \simeq \text{Coh}(X^{\text{rig}}),$$

- ▶ *and for every coherent sheaf \mathcal{F} on X ,*

$$H^i(X, \mathcal{F}) \cong H^i(X^{\text{rig}}, \mathcal{F}^{\text{rig}}) \quad \text{for all } i \geq 0.$$

Rigid analytic spaces

Definition (Rigid analytic spaces). Let K be a non-archimedean field.

- ▶ A *K -affinoid algebra* is a Banach K -algebra which plays the role of a ring of analytic functions over a non-archimedean field.
- ▶ An *affinoid rigid space* is the spectrum

$$\mathrm{Sp}(A)$$

of maximal ideals of a K -affinoid algebra A , equipped with its Grothendieck topology and structure sheaf.

- ▶ A *rigid analytic space* over K is a G -space which is locally isomorphic to affinoid rigid spaces, i.e. it admits an admissible covering by spaces of the form $\mathrm{Sp}(A)$.

Berkovich spaces: topological improvement

To deal with the topological issues of rigid analytic spaces, Berkovich introduced a new notion of non-archimedean analytic spaces.

- ▶ A *Berkovich space* is defined by enlarging the set of points: points correspond to multiplicative seminorms on affinoid algebras, rather than maximal ideals.
- ▶ As a result, Berkovich spaces carry a genuine topology. For example, for a K -affinoid algebra A , the Berkovich spectrum $\mathcal{M}(A)$ is Hausdorff and compact.

Philosophical comparison.

- ▶ Rigid analytic spaces make the *function theory* work correctly.
- ▶ Berkovich spaces make the *topology* work correctly.

Formal schemes: infinitesimal geometry

Motivation (infinitesimal behavior). Formal schemes are introduced to systematically encode *infinitesimal* neighborhoods.

- ▶ Example: the quotient

$$k[x]/(x^n)$$

describes the local behavior of the affine line $\text{Spec} k[x]$ near the point 0 up to order n .

- ▶ Passing to all orders suggests the formal limit

$$\varprojlim_n k[x]/(x^n),$$

which should be thought of as the ring of functions on the *formal neighborhood* of 0. (This is intuition rather than the definition.)

Formal Schemes

Definition (affine formal scheme). Let A be a ring and let $I \subset A$ be an ideal. Assume that A is *I -adically complete and separated*, i.e.

$$A \cong \varprojlim_n A/I^n.$$

Then the *affine formal scheme* associated to (A, I) is

$$\mathrm{Spf}(A),$$

whose underlying topological space is $\mathrm{Spec}(A/I)$ and whose structure sheaf is obtained by I -adic completion on basic opens.

Formal GAGA

Theorem

Let X be a projective scheme over a noetherian ring A , and let $I \subset A$ be an ideal. Denote by \widehat{X} the formal completion of X along I . Then the completion functor induces an equivalence of categories

$$\mathrm{Coh}(X) \simeq \mathrm{Coh}(\widehat{X}),$$

and for every coherent sheaf \mathcal{F} on X , the natural map

$$H^i(X, \mathcal{F}) \cong H^i(\widehat{X}, \widehat{\mathcal{F}}) \quad \text{for all } i \geq 0$$

is an isomorphism.

Adic spaces

Huber rings. A *Huber ring* is a topological ring A admitting an open subring $A_0 \subset A$ such that

- ▶ the topology on A_0 is I -adic for some finitely generated ideal I ,
- ▶ the topology on A is induced from that of A_0 .

Affinoid pairs. An *affinoid pair* is a pair (A, A^+) , where A is a Huber ring and $A^+ \subset A$ is an open, integrally closed subring.

The adic spectrum. To an affinoid pair (A, A^+) one associates the adic spectrum $\text{Spa}(A, A^+)$, whose points are equivalence classes of continuous valuations on A bounded by 1 on A^+ .

Adic Spaces

On $\text{Spa}(A, A^+)$ one can define presheaves

$$\mathcal{O}_X \quad \text{and} \quad \mathcal{O}_X^+,$$

which in most well-behaved situations are in fact sheaves.

Adic spaces. An *affinoid adic space* is the space $\text{Spa}(A, A^+)$ for affinoid pair (A, A^+) with \mathcal{O}_X a sheaf.

An *adic space* is a space which is locally affinoid adic.¹

¹Here we should consider an adic space in a category (V) with object be a space together with a sheaf \mathcal{O}_X and a family of valuation information $\{v_x\}$

Adic spaces

Theorem (Huber)

Adic spaces provide a common framework for rigid analytic geometry and formal geometry via fully faithful embeddings.

- ▶ *There exists a fully faithful functor*

$$r_K : (\text{rigid analytic spaces over } K) \longrightarrow (\text{adic spaces}),$$

which sends $\text{Sp}(A)$ to $\text{Spa}(A, A^\circ)$.

- ▶ *There exists a fully faithful functor*

$$t : (\text{locally noetherian formal schemes}) \longrightarrow (\text{adic spaces}),$$

which sends $\text{Spf}(A)$ to $\text{Spa}(A, A)$.

In this sense, adic spaces simultaneously generalize rigid analytic spaces and formal schemes.

Why adic spaces?

From rigid analytic geometry.

- ▶ The category of rigid analytic spaces does not admit well-behaved inverse limits.
- ▶ As a consequence, constructions such as perfectoid spaces can only live in adic spaces.

From formal geometry.

- ▶ A formal scheme describes an infinitesimal neighborhood of a point or a closed subscheme. However, they do not carry genuine analytic neighborhoods.
- ▶ Adic spaces provide a geometric realization of these formal neighborhoods, interpolating between formal and analytic geometry.

Perfectoid Spaces

Perfectoid rings. Let K be a perfectoid field. A Huber pair (R, R^+) is called a *perfectoid affinoid K -algebra* if

- ▶ R is a complete uniform Tate K -algebra,
- ▶ the Frobenius map

$$\varphi : R^\circ/p \longrightarrow R^\circ/p$$

is surjective.

Perfectoid spaces. A *perfectoid space* is an adic space which is locally isomorphic to $\text{Spa}(R, R^+)$ for some perfectoid affinoid K -algebra (R, R^+) .

Tilting

Definition (Tilt of a perfectoid ring). Let (R, R^+) be a perfectoid affinoid K -algebra. The *tilt* of R is defined as

$$R^\flat := \varprojlim_{x \mapsto x^p} R,$$

with ring structure induced from R . The subring

$$R^{\flat+} := \varprojlim_{x \mapsto x^p} R^+$$

defines a perfectoid affinoid algebra $(R^\flat, R^{\flat+})$ over the tilt K^\flat .

Tilting equivalence

Theorem

1. *The tilting construction induces an equivalence of categories $\{K\text{-Perfd}\} \simeq \{K^\flat\text{-Perfd}\}$.*
2. *Let $X = \text{Spa}(R, R^+)$ be a perfectoid adic space. Then its tilt $X^\flat := \text{Spa}(R^\flat, R^{\flat+})$ is a perfectoid space over K^\flat , and the assignment $X \longmapsto X^\flat$ induces an equivalence of categories between perfectoid spaces over K and over K^\flat . Moreover, X and X^\flat are homeomorphic and have canonically identified rational subsets.*

An important example: the Fargues–Fontaine curve

Untilts. Let F be a perfectoid field of characteristic p . An *untilt* of F is a perfectoid field K of characteristic 0 together with an identification

$$K^\flat \cong F.$$

The ring A_{inf} . Let \mathcal{O}_F be the ring of integers of F . Set

$$A_{\text{inf}} := W(\mathcal{O}_F).$$

For suitable *distinguished elements* $\xi \in A_{\text{inf}}$ (defined so that they cut out untilts), one obtains a precise bridge between untilts and quotients of A_{inf} .

Fargues-Fontaine Curves

Theorem

Let F be a perfectoid field of characteristic p . Then the assignment

$$\xi \longmapsto \text{Frac}(A_{\text{inf}}/(\xi))$$

induces a bijection

$$(\{\text{distinguished elements of } A_{\text{inf}}\}/A_{\text{inf}}^{\times}) \cong (\{\text{untilts of } F\}/\cong).$$

Heuristic picture. For untilts C of F , $|p|_C$ varies from 0 to 1. We would like to use this to parametrize

$$Y := (\{\text{untilts of } F\}/\cong)$$

as the unit disk.

Fargues-Fontaine Curves

A holomorphic function on the punctured unit disk can be written as a Laurent series $\sum_{n \geq -k} c_n z^n$ satisfying the growth conditions

$$\limsup_{n \rightarrow \infty} |c_n|^{1/n} \leq 1, \quad \limsup_{n \rightarrow \infty} |c_{-n}|^{1/n} = 0.$$

A p -adic analogue. Fix $\varpi \in \mathcal{O}_F$ with $0 < |\varpi| < 1$ and write $[\varpi] \in A_{\text{inf}}$ for its Teichmüller lift. Inside

$$A_{\text{inf}} \left[\frac{1}{p}, \frac{1}{[\varpi]} \right] = \left\{ \sum_{n \geq -k} [c_n] p^n \mid (c_n) \subset F \text{ bounded} \right\},$$

one enlarges to a ring B such that whenever an element admits an expansion

$$\sum_{n \geq -k} [c_n] p^n,$$

the coefficients satisfy the same type of growth conditions:

$$\limsup_{n \rightarrow \infty} |c_n|^{1/n} \leq 1, \quad \limsup_{n \rightarrow \infty} |c_{-n}|^{1/n} = 0.$$

We think of B as a *ring of holomorphic functions* on a space Y .

Fargues-Fontaine Curves

Definition (Fargues-Fontaine curve). Let φ denote Frobenius on B . Define

$$X_F := \text{Proj} \left(\bigoplus_{n \geq 0} B^{\varphi=p^n} \right).$$

This is the (schematic) Fargues-Fontaine curve.

Fargues-Fontaine Curves

The Fargues-Fontaine curve behaves in many ways like a complete algebraic curve (of genus 0 in some sense). For example:

- ▶ The cohomology group $H^1(X_F, \mathcal{O}_{X_F})$ vanishes.
- ▶ Degree formula (no “missing points”): for any rational function f on X_F ,

$$\sum_{x \in X_F} \deg_x(f) = 0.$$

- ▶ Vector bundles on X_F admit a canonical Harder–Narasimhan filtration (and are governed by slopes, as for bundles on curves), i.e.,

Theorem

Then every vector bundle \mathcal{E} on X_F is isomorphic to a vector bundle of the form

$$\mathcal{E} \cong \bigoplus_{i=1}^r \mathcal{O}_{X_F}(\lambda_i),$$

where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_r$ are rational numbers.

Moreover, the multiset $\{\lambda_i\}$ is uniquely determined by \mathcal{E} .

The Fargues–Fontaine Curves

Let E be a finite extension over \mathbb{Q}_p with uniformizer π .

The space $Y_{F,E}$. Let $W(\mathcal{O}_F)$ denote the ring of Witt vectors of \mathcal{O}_F , and set

$$W_{\mathcal{O}_E}(\mathcal{O}_F) := W(\mathcal{O}_F) \otimes_{W(\mathbb{F}_q)} \mathcal{O}_E.$$

One defines an adic space

$$Y_{F,E} := \text{Spa}(W_{\mathcal{O}_E}(\mathcal{O}_F)) \setminus \{|\pi| = 0\},$$

which can be covered by suitable rational subsets. The Frobenius induces an automorphism

$$\varphi : Y_{F,E} \longrightarrow Y_{F,E}.$$

Definition The *adic Fargues–Fontaine curve* is defined as the quotient

$$X_{F,E} := Y_{F,E}/\varphi^{\mathbb{Z}}.$$

Fargues-Fontaine Curves

When $E = \mathbb{Q}_p$, the adic Fargues-Fontaine curve $X_{F,E}$ is canonically isomorphic to the adic analytification of the schematic Fargues-Fontaine curve X_F constructed earlier.

Gal(\mathbb{Q}_p) as a fundamental group

Let E be a p -adic field.

Theorem

One can construct an object Z_E in the pro-étale site of Perf_C , such that the category of finite étale covers of Z_E is equivalent to the category of finite étale E -algebras. Equivalently,

$$\pi_1^{\text{ét}}(Z_E) \cong \text{Gal}(\overline{E}/E).$$

In this way, arithmetic Galois groups arise as fundamental groups of geometric objects in characteristic p -adic geometry.

Thank you.