Arithmetic Purity for Strong Approximation

Yongqi LIANG

Université Paris Diderot - Paris 7, France joint work with Yang CAO - Université Paris 11, Orsay France Fei XU - Capital Normal University, Beijing China

> 17 May 2017 Emory University, Atlanta U.S.

A (1) < A (1) < A (1) < A (1) </p>

Notation

- *k* : number field
- $\Omega_k = \Omega_k^f \sqcup \infty_k$ set of places
- k_v for $v \in \Omega_k$
- $\mathcal{O}_v \subset k_v$ for $v \in \Omega^f_k$
- A_k ring of adèles
- $S \subset \Omega_k$ finite subset \mathbf{A}_k^S adèles *without S*-components $pr^S : \mathbf{A}_k \to \mathbf{A}_k^S$ natural projection
- X : smooth variety over k (variety = separated scheme of finite type, geometrically integral)
- $Br(X) = H^2_{\text{\'et}}(X, \mathbb{G}_m)$ the cohomological Brauer group

• $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally

- Weak approximation holds if *X*(*k*) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if *X*(*k*) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_{\nu})_{\nu} \in \prod_{S_0} M_{\nu} \times \prod_{\nu \notin S_0} U(k_{\nu})$ with $M_{\nu} \subset U(k_{\nu})$ open,

Weak approximation

- $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)$ with $M_v \subset U(k_v)$ open, $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)$, $M_v \subset X(k_v)$ open

• • • • • • •

Weak approximation

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)$ with $M_v \subset U(k_v)$ open, $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v), M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)]$

• • = • • = •

Weak approximation

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)$ with $M_v \subset U(k_v)$ open, $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)$, $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)]$ $\implies x \in U(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)]$, don't need to care about $v \notin S_0$

• • • • • • •

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m X satisfies strong approximation off S U does not satisfy strong approximation off S

・ 同 ト ・ 三 ト ・

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m X satisfies strong approximation off S U does not satisfy strong approximation off S

▲ □ ▶ ▲ □ ▶ ▲

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

F 4 3 F 4

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:

- strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open

Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{U}(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)]$
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

F 4 3 F 4

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off S holds if X(k) is dense w.r.t. adélic topology
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{U}(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)]$ $\implies x \in U(k)$, but $\Rightarrow x \in \mathcal{U}(\mathcal{O}_v)$ for $v \notin S_0$
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m X satisfies strong approximation off S U does not satisfy strong approximation off S

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off S holds if X(k) is dense w.r.t. adélic topology
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{U}(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)]$ $\implies x \in U(k)$, but $\Rightarrow x \in \mathcal{U}(\mathcal{O}_v)$ for $v \notin S_0$
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

くほし くほし くほし

• Why?
$$(X = \mathbb{A}^1, U = \mathbb{G}_m)$$

- 1. étale fundamental groups
- 2. Brauer groups
- in such a case

э

-

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups
- 2. Brauer groups
- in such a case

E ▶ ...

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups
- in such a case

Image: A Image: A

Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$

Theorem (Minchev)

Let V be a variety defined over a number field k. If $V_{\bar{k}}$ is not simply connected $\pi_1^{\acute{e}t}(V_{\bar{k}}) \neq 0$, then V can never satisfy strong approximation.

- 2. Brauer groups
- in such a case

→ < Ξ → </p>

Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$

Theorem (Minchev)

Let V be a variety defined over a number field k. If $V_{\bar{k}}$ is not simply connected $\pi_1^{\acute{e}t}(V_{\bar{k}}) \neq 0$, then V can never satisfy strong approximation.

- 2. Brauer groups
- in such a case

→ < Ξ → </p>

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite

• in such a case

A 3 A

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite

- Brauer-Manin pairing: $V(\mathbf{A}_k) \times Br(V) \rightarrow \mathbb{Q}/\mathbb{Z}$

-
$$V(k) \subset \overline{V(k)} \subset V(\mathsf{A}_k)^{\mathsf{Br}} \subset V(\mathsf{A}_k)$$

in such a case

• • • • • • • • •

• Why? $(X = \mathbb{A}^1, U = \mathbb{G}_m)$

Apart from the subtle adélic topology, two more reasons:

- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups Br(X)/Br(k) = 0 while $Br_1(U)/Br(k) \simeq H^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite - Brauer-Manin pairing: $V(\mathbf{A}_k) \times Br(V) \rightarrow \mathbb{Q}/\mathbb{Z}$ - $V(k) \subset \overline{V(k)} \subset V(\mathbf{A}_k)^{Br} \subset V(\mathbf{A}_k)$ $X(\mathbf{A}_k)^{Br} = X(\mathbf{A}_k)$ while $U(\mathbf{A}_k)^{Br} \subsetneq U(\mathbf{A}_k)$

in such a case

・ 同 ト ・ ヨ ト ・ ヨ ト

• Why? $(X = \mathbb{A}^1, U = \mathbb{G}_m)$

Apart from the subtle adélic topology, two more reasons:

- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups Br(X)/Br(k) = 0 while $Br_1(U)/Br(k) \simeq H^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite - Brauer-Manin pairing: $V(\mathbf{A}_k) \times Br(V) \rightarrow \mathbb{Q}/\mathbb{Z}$ - $V(k) \subset \overline{V(k)} \subset V(\mathbf{A}_k)^{Br} \subset V(\mathbf{A}_k)$ $X(\mathbf{A}_k)^{Br} = X(\mathbf{A}_k)$ while $U(\mathbf{A}_k)^{Br} \subsetneq U(\mathbf{A}_k)$

in such a case

・ 同 ト ・ ヨ ト ・ ヨ ト

 Why? (X = A¹, U = G_m) Apart from the subtle adélic topology, two more reasons:

- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups Br(X)/Br(k) = 0 while $Br_1(U)/Br(k) \simeq H^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite

Question (Wittenberg 2014)

What happens if $Z = X \setminus U$ is of codimension ≥ 2 ?

• in such a case

・ 同 ト ・ ヨ ト ・ ヨ ト ……

Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:

- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups Br(X)/Br(k) = 0 while $Br_1(U)/Br(k) \simeq H^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite

Question (Wittenberg 2014)

What happens if $Z = X \setminus U$ is of codimension ≥ 2 ?

- in such a case
 - Zariski-Nagata: $\pi_1^{\text{\'et}}(X_{\overline{k}}) = \pi_1^{\text{\'et}}(U_{\overline{k}})$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups Br(X)/Br(k) = 0 while $Br_1(U)/Br(k) \simeq H^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite

Question (Wittenberg 2014)

What happens if $Z = X \setminus U$ is of codimension ≥ 2 ?

- in such a case
 - Zariski-Nagata: $\pi_1^{ ext{\acute{e}t}}(X_{ar{k}})=\pi_1^{ ext{\acute{e}t}}(U_{ar{k}})$
 - purity for étale cohomology: Br(X) = Br(U)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- What about the case when X is a semi-simple simply connected group?
- in these cases $\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$
- in general, should take into account the Brauer-Manin obstruction

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of \mathbb{A}^n such that $\operatorname{codim}(Z, X) \ge 2$. Then $\mathbb{A}^n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

• What about the case when X is a semi-simple simply connected group?

• in these cases
$$\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$$

 in general, should take into account the Brauer-Manin obstruction

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of \mathbb{A}^n such that $\operatorname{codim}(Z, X) \ge 2$. Then $\mathbb{A}^n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

- What about the case when X is a semi-simple simply connected group?
- in these cases $\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$
- in general, should take into account the Brauer-Manin obstruction

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of \mathbb{A}^n such that $\operatorname{codim}(Z, X) \ge 2$. Then $\mathbb{A}^n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

- What about the case when X is a semi-simple simply connected group?
- in these cases $\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$
- in general, should take into account the Brauer-Manin obstruction

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of \mathbb{A}^n such that $\operatorname{codim}(Z, X) \ge 2$. Then $\mathbb{A}^n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

- What about the case when X is a semi-simple simply connected group?
- in these cases $\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$
- in general, should take into account the Brauer-Manin obstruction

• $S \subset \Omega_k$ finite subset \mathbf{A}_k^S adèles without S-components $pr^S : \mathbf{A}_k \to \mathbf{A}_k^S \ pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections

• Consider $X(k) \subset \overline{X(k)} \subset pr^{S}(X(\mathbf{A}_{k})^{\mathrm{Br}}) \subset X(\mathbf{A}_{k}^{S})$

• one may also consider larger codimension instead of 2, we will specify later.

- $S \subset \Omega_k$ finite subset \mathbf{A}_k^S adèles without *S*-components $pr^S : \mathbf{A}_k \to \mathbf{A}_k^S \& pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections
- Consider $X(k) \subset \overline{X(k)} \subset pr^{S}(X(\mathbf{A}_{k})^{\mathrm{Br}}) \subset X(\mathbf{A}_{k}^{S})$
- one may also consider larger codimension instead of 2, we will specify later.

Brauer-Manin obstruction to strong approximation

S ⊂ Ω_k finite subset
 A^S_k adèles without S-components
 pr^S : A_k → A^S_k & pr^S : X(A_k) → X(A^S_k) natural projections
 Consider X(k) ⊂ X(k) ⊂ pr^S(X(A_k)^{Br}) ⊂ X(A^S_k)

Definition

(1)We say that X satisfies strong approximation with Brauer-Manin obstruction off S if $\overline{X(k)} = pr^{S}(X(\mathbf{A}_{k})^{\mathrm{Br}}) \subset X(\mathbf{A}_{k}^{S})$.

• one may also consider larger codimension instead of 2, we will specify later.

→ < Ξ → <</p>

Brauer-Manin obstruction to strong approximation

S ⊂ Ω_k finite subset
 A^S_k adèles without S-components
 pr^S : A_k → A^S_k & pr^S : X(A_k) → X(A^S_k) natural projections
 Consider X(k) ⊂ X(k) ⊂ pr^S(X(A_k)^{Br}) ⊂ X(A^S_k)

Definition

(1)We say that X satisfies strong approximation with Brauer-Manin obstruction off S if $\overline{X(k)} = pr^{S}(X(\mathbf{A}_{k})^{\mathrm{Br}}) \subset X(\mathbf{A}_{k}^{S})$. (2) Furthermore, we say that X verifies arithmetic purity (for strong approximation with Brauer-Manin obstruction off S) if for all Zariski closed subset $Z \subset X$ such that $\operatorname{codim}(Z, X) \ge 2$, the complement $U = X \setminus Z$ still satisfies strong approximation with Brauer-Manin obstruction off S.

• one may also consider larger codimension instead of 2, we will specify later.

Brauer-Manin obstruction to strong approximation

S ⊂ Ω_k finite subset
 A^S_k adèles without S-components
 pr^S : A_k → A^S_k & pr^S : X(A_k) → X(A^S_k) natural projections
 Consider X(k) ⊂ X(k) ⊂ pr^S(X(A_k)^{Br}) ⊂ X(A^S_k)

Definition

(1)We say that X satisfies strong approximation with Brauer-Manin obstruction off S if $\overline{X(k)} = pr^{S}(X(\mathbf{A}_{k})^{\mathrm{Br}}) \subset X(\mathbf{A}_{k}^{S})$. (2) Furthermore, we say that X verifies arithmetic purity (for strong approximation with Brauer-Manin obstruction off S) if for all Zariski closed subset $Z \subset X$ such that $\operatorname{codim}(Z, X) \ge 2$, the complement $U = X \setminus Z$ still satisfies strong approximation with Brauer-Manin obstruction off S.

• one may also consider larger codimension instead of 2, we will specify later.

- Analog: Arithmetic purity for weak approximation holds once *X* satisfies weak approximation with BM obstruction.
- No! even for rational varieties.
- Example (Y. Cao & F. Xu 2013):
- X fails arithmetic purity

• Analog: Arithmetic purity for weak approximation holds once X satisfies weak approximation with BM obstruction.

Question

Does arithmetic purity for strong approximation with BM obstruction holds in general?

- No! even for rational varieties.
- Example (Y. Cao & F. Xu 2013):
- X fails arithmetic purity

• Analog: Arithmetic purity for weak approximation holds once X satisfies weak approximation with BM obstruction.

Question

Does arithmetic purity for strong approximation with BM obstruction holds in general?

- No! even for rational varieties.
- Example (Y. Cao & F. Xu 2013):
- X fails arithmetic purity

• Analog: Arithmetic purity for weak approximation holds once X satisfies weak approximation with BM obstruction.

Question

Does arithmetic purity for strong approximation with BM obstruction holds in general?

- No! even for rational varieties.
- Example (Y. Cao & F. Xu 2013):
 - $k = \mathbb{Q}$ or an imaginary quadratic field

- $X = \mathbb{G}_m \times \mathbb{A}^1$ satisfies str. approx. with BM obs. off ∞_k (Harari 2008, arithmetic duality theorems)

• X fails arithmetic purity

F 4 3 F 4

Arithmetic purity

• Analog: Arithmetic purity for weak approximation holds once X satisfies weak approximation with BM obstruction.

Question

Does arithmetic purity for strong approximation with BM obstruction holds in general?

• No! even for rational varieties.

• X fails arithmetic purity

Arithmetic purity

• Analog: Arithmetic purity for weak approximation holds once X satisfies weak approximation with BM obstruction.

Question

Does arithmetic purity for strong approximation with BM obstruction holds in general?

• No! even for rational varieties.

• X fails arithmetic purity

- As a corollary of our main result (you will see it soon... be patient!):
- We should modify the question

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$, does X verify arithmetic purity for str. approx. with BM obs.?

・ 同 ト ・ 三 ト ・

- One more example: $X = GL_n (n \ge 2)$ satisfies str. approx. with BM obs. (Demarche 2011)
- As a corollary of our main result (you will see it soon... be patient!):
 X fails arithmetic purity if k = Q or an imaginary quadratic field
- We should modify the question

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$, does X verify arithmetic purity for str. approx. with BM obs.?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

As a corollary of our main result (you will see it soon... be patient!):
 X fails arithmetic purity if k = 0 or an imaginary quadratic

X fails arithmetic purity if $k=\mathbb{Q}$ or an imaginary quadratic field

(idea: remove a divisor of a certain fiber of $det : GL_n \to \mathbb{G}_m$)

• We should modify the question

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$, does X verify arithmetic purity for str. approx. with BM obs.?

(日) (同) (三) (三)

• As a corollary of our main result (you will see it soon... be patient!):

X fails arithmetic purity if $k = \mathbb{Q}$ or an imaginary quadratic field

(idea: remove a divisor of a certain fiber of $\det:\operatorname{GL}_n\to {\mathbb{G}}_m)$

• We should modify the question

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$, does X verify arithmetic purity for str. approx. with BM obs.?

・ 同 ト ・ 三 ト ・

• As a corollary of our main result (you will see it soon... be patient!):

X fails arithmetic purity if $k = \mathbb{Q}$ or an imaginary quadratic field

(idea: remove a divisor of a certain fiber of $\det:\operatorname{GL}_n\to {\mathbb{G}}_m)$

• We should modify the question

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$, does X verify arithmetic purity for str. approx. with BM obs.?

・ 同 ト ・ 三 ト ・

No!

I am sorry...

æ

Harari-Voloch 2010: elliptic curve $E_{/\mathbb{Q}} : y^2 = x^3 + 3$, $E(\mathbb{Q}) = \mathbb{Z}$ $U = E \setminus \{O\}$ a hyperbolic curve U does not satisfy str. approx. with BM obs. off $\infty_{\mathbb{Q}}$ • idea of proof:

A 3 b

Harari-Voloch 2010: elliptic curve $E_{/\mathbb{Q}} : y^2 = x^3 + 3$, $E(\mathbb{Q}) = \mathbb{Z}$ $U = E \setminus \{O\}$ a hyperbolic curve U does not satisfy str. approx. with BM obs. off $\infty_{\mathbb{Q}}$

• We generalise this to

Theorem

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

• idea of proof:

→ < Ξ → </p>

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

• idea of proof:

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

• idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

idea of proof: choose U a good O_k-model of U
 take Q ∈ E(k) a point of infinite order

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $\operatorname{III}(E, k) < \infty$.

- idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U
 - take $Q \in E(k)$ a point of infinite order
 - Q is a S-integral point of U for a certain finite set S

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

- idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U
 - take $Q \in E(k)$ a point of infinite order
 - Q is a S-integral point of U for a certain finite set S
 - Siegel: $\mathcal{U}(\mathcal{O}_{k,S})$ is finite

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

- idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U
 - take $Q \in E(k)$ a point of infinite order
 - Q is a S-integral point of U for a certain finite set S
 - Siegel: $\mathcal{U}(\mathcal{O}_{k,S})$ is finite

- consider a sequence $pQ \in E(k) \subset E(\mathbf{A}_k)_{\bullet}$ where prime number p runs in a carefully chosen arithmetic progression

/⊒ ▶ < ⊒ ▶ <

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

- idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U
 - take $Q \in E(k)$ a point of infinite order
 - Q is a S-integral point of U for a certain finite set S
 - Siegel: $\mathcal{U}(\mathcal{O}_{k,S})$ is finite

- consider a sequence $pQ \in E(k) \subset E(\mathbf{A}_k)_{\bullet}$ where prime number p runs in a carefully chosen arithmetic progression - a subsequence converges to $(x_v)_{v \in \Omega}$ in $E(\mathbf{A}_k)_{\bullet}$

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

- idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U
 - take $Q \in E(k)$ a point of infinite order
 - Q is a S-integral point of U for a certain finite set S
 - Siegel: $\mathcal{U}(\mathcal{O}_{k,S})$ is finite
 - consider a sequence $pQ \in E(k) \subset E(\mathbf{A}_k)_{\bullet}$ where prime number p runs in a carefully chosen arithmetic progression
 - a subsequence converges to $(x_v)_{v\in\Omega}$ in $E(\mathbf{A}_k)_{ullet}$
 - $(x_v)_v \perp Br(E)$ and Br(E) = Br(U)

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

- idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U
 - take $Q \in E(k)$ a point of infinite order
 - Q is a S-integral point of U for a certain finite set S
 - Siegel: $\mathcal{U}(\mathcal{O}_{k,S})$ is finite
 - consider a sequence $pQ \in E(k) \subset E(\mathbf{A}_k)_{\bullet}$ where prime number p runs in a carefully chosen arithmetic progression
 - a subsequence converges to $(x_v)_{v\in\Omega}$ in $E(\mathsf{A}_k)_{ullet}$
 - $(x_v)_v \perp Br(E)$ and Br(E) = Br(U)
 - check that $x_v \in \mathcal{U}(\mathcal{O}_v)$ for $v \notin S$ and $(x_v)_v \in U(\mathsf{A}_k)_ullet$

11/20

Punctured elliptic curves

Theorem

Let E be an elliptic curve defined over a number field k. $U = E \setminus \{O\}$. If E(k) has positive rank, then U does not satisfy str. approx. with BM obs. off ∞_k . The converse is also true if $III(E, k) < \infty$.

- idea of proof: choose \mathcal{U} a good \mathcal{O}_k -model of U
 - take $Q \in E(k)$ a point of infinite order
 - Q is a S-integral point of U for a certain finite set S
 - Siegel: $\mathcal{U}(\mathcal{O}_{k,S})$ is finite
 - consider a sequence $pQ \in E(k) \subset E(\mathbf{A}_k)_{\bullet}$ where prime number p runs in a carefully chosen arithmetic progression
 - a subsequence converges to $(x_v)_{v\in\Omega}$ in $E(\mathbf{A}_k)_{ullet}$
 - $(x_v)_v \perp Br(E)$ and Br(E) = Br(U)
 - check that $x_{v} \in \mathcal{U}(\mathcal{O}_{v})$ for $v \notin S$ and $(x_{v})_{v} \in U(\mathsf{A}_{k})_{ullet}$
 - by *p*-adic logarithm, check that $(x_v)_v$ can not be

approximated by global (S-integral) points of U_* .

the above 1-dimensional result + fibration argument \implies arithmetic purity results

- $A \times E$ fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:
- We should modify our question to avoid Abelian varieties.

the above 1-dimensional result + fibration argument \implies arithmetic purity results

Theorem

Let E be an elliptic curve of rank ≥ 1 over a number field k. Let A be an Abelian variety of rank 0. Than $(E \times A) \setminus \{O\}$ does not satisfy str. approx. with BM obs. off ∞_k .

- *A* × *E* fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:
- We should modify our question to avoid Abelian varieties.

- $A \times E$ fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:
- We should modify our question to avoid Abelian varieties.

- $A \times E$ fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:
- We should modify our question to avoid Abelian varieties.

- $A \times E$ fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:
- We should modify our question to avoid Abelian varieties.

- A × E fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction: $(E \times A) \setminus \{O\}$ str. approx. BM
- We should modify our question to avoid Abelian varieties.

- A × E fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction: $(E \times A) \setminus \{O\}$ str. approx. BM + A(k) discrete in $A(\mathbf{A}_k)$
- We should modify our question to avoid Abelian varieties.

Let E be an elliptic curve of rank ≥ 1 over a number field k. Let A be an Abelian variety of rank 0. Than $(E \times A) \setminus \{O\}$ does not satisfy str. approx. with BM obs. off ∞_k .

- A × E fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:
 (E × A) \ {O} str. approx. BM + A(k) discrete in A(A_k)
 ⇒ the punctured fiber E \ {O} str. approx. BM

• We should modify our question to avoid Abelian varieties.

Let E be an elliptic curve of rank ≥ 1 over a number field k. Let A be an Abelian variety of rank 0. Than $(E \times A) \setminus \{O\}$ does not satisfy str. approx. with BM obs. off ∞_k .

- A × E fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:

 $(E \times A) \setminus \{O\}$ str. approx. BM + A(k) discrete in $A(\mathbf{A}_k)$ \implies the punctured fiber $E \setminus \{O\}$ str. approx. BM contradicting the previous theorem

• We should modify our question to avoid Abelian varieties.

A (1) < A (1) < A (1) < A (1) </p>

Theorem

Let E be an elliptic curve of rank ≥ 1 over a number field k. Let A be an Abelian variety of rank 0. Than $(E \times A) \setminus \{O\}$ does not satisfy str. approx. with BM obs. off ∞_k .

- A × E fails arithmetic purity (even for arbitrarily large codimension).
- Remark. Similar statement holds for tori and semi-abelian varieties.
- proof by contradiction:

 $(E \times A) \setminus \{O\}$ str. approx. BM + A(k) discrete in $A(\mathbf{A}_k)$ \implies the punctured fiber $E \setminus \{O\}$ str. approx. BM contradicting the previous theorem

• We should modify our question to avoid Abelian varieties.

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$ and $\operatorname{Pic}(X_{\bar{k}})$ is finitely generated, does X verify arithmetic purity for str. approx. with BM obs. (off S)?

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$ and $\operatorname{Pic}(X_{\bar{k}})$ is finitely generated, does X verify arithmetic purity for str. approx. with BM obs. (off S)?

A known result:

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that $\bar{k}[X]^{\times} = \bar{k}^{\times}$. Then X verifies arithmetic purity for str. approx. with BM obs. off $S \neq \emptyset$.

▲ □ ▶ ▲ □ ▶ ▲

Question

Suppose that $\bar{k}[X]^{\times} = \bar{k}^{\times}$ and $\operatorname{Pic}(X_{\bar{k}})$ is finitely generated, does X verify arithmetic purity for str. approx. with BM obs. (off S)?

A known result:

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that $\bar{k}[X]^{\times} = \bar{k}^{\times}$. Then X verifies arithmetic purity for str. approx. with BM obs. off $S \neq \emptyset$.

Examples: \mathbb{A}^n , \mathbb{P}^n

▲ □ ▶ ▲ □ ▶ ▲

In our paper, we study arithmetic purity for strong approximation for $% \left({{{\mathbf{r}}_{\mathbf{r}}}_{\mathbf{r}}} \right)$

- Algebraic groups
- certain homogeneous spaces

.⊒ . ► . .

- Algebraic groups
- certain homogeneous spaces

3 N

- Algebraic groups
 - mentioned above:

Abelian varieties, tori, semi-abelian varieties

• certain homogeneous spaces

- Algebraic groups
 - mentioned above:

Abelian varieties, tori, semi-abelian varieties

- quasi-split semi-simple simply connected groups
- certain homogeneous spaces

3.5

- Algebraic groups
 - mentioned above:

Abelian varieties, tori, semi-abelian varieties

- quasi-split semi-simple simply connected groups
- connected linear algebraic groups with ${\it G}^{\rm sc}$ quasi-split

• certain homogeneous spaces

- Algebraic groups
 - mentioned above:
 - Abelian varieties, tori, semi-abelian varieties
 - quasi-split semi-simple simply connected groups
 - connected linear algebraic groups with ${\it G}^{\rm sc}$ quasi-split
- certain homogeneous spaces

- Algebraic groups
 - mentioned above:

Abelian varieties, tori, semi-abelian varieties

- quasi-split semi-simple simply connected groups
- connected linear algebraic groups with G^{sc} quasi-split
- certain homogeneous spaces

Theorem

Let G be a semi-simple simply connected linear algebraic group defined over a number field. Suppose that G is quasi-split. Then G verifies arithmetic purity for strong approximation off $S \neq \emptyset$.

- Algebraic groups
 - mentioned above:

Abelian varieties, tori, semi-abelian varieties

- quasi-split semi-simple simply connected groups
- connected linear algebraic groups with G^{sc} quasi-split
- certain homogeneous spaces

Theorem

Let G be a semi-simple simply connected linear algebraic group defined over a number field. Suppose that G is quasi-split. Then G verifies arithmetic purity for strong approximation off $S \neq \emptyset$. (In this case Br(G)/Br(k) = 0.)

- G quasi-split: $B \subset G$ be a k-Borel, $T \subset B = T \ltimes B^{u}$ a maximal torus.
- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \overline{k}[V]^{\times}/\overline{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \text{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale *k*-algebra *K*.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
- some kind of fibration argument completes the proof.

A (a) > (b)

- G quasi-split: $B \subset G$ be a k-Borel, $T \subset B = T \ltimes B^{u}$ a maximal torus.
- Bruhat decomposition: the big cell V = BwB ⊂ G is an open dense, where w ∈ G(k) is the longest root
- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \text{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale k-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
- some kind of fibration argument completes the proof.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *G* quasi-split: $B \subset G$ be a *k*-Borel, $T \subset B = T \ltimes B^{u}$ a maximal torus.
- Bruhat decomposition: the big cell V = BwB ⊂ G is an open dense, where w ∈ G(k) is the longest root
- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \text{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale k-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
- some kind of fibration argument completes the proof.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- *G* quasi-split: $B \subset G$ be a *k*-Borel, $T \subset B = T \ltimes B^{u}$ a maximal torus.
- Bruhat decomposition: the big cell V = BwB ⊂ G is an open dense, where w ∈ G(k) is the longest root
- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{ imes}/\bar{k}^{ imes}$ is a permutation Galois module.
- T is quasi-trivial: $T = \text{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale *k*-algebra *K*.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
- some kind of fibration argument completes the proof.

(1日) (1日) (1日)

- *G* quasi-split: $B \subset G$ be a *k*-Borel, $T \subset B = T \ltimes B^{u}$ a maximal torus.
- Bruhat decomposition: the big cell V = BwB ⊂ G is an open dense, where w ∈ G(k) is the longest root
- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale k-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
- some kind of fibration argument completes the proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale k-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
- some kind of fibration argument completes the proof.

▲ □ ▶ ▲ □ ▶ ▲

- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale *k*-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
- some kind of fibration argument completes the proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale k-algebra K.
- In such a case φ extends to a smooth morphism φ : Y → R with non-empty geometrically integral fibres, where
 V ⊂ Y ⊂ G & codim(G \ Y, G) ≥ 2
- some kind of fibration argument completes the proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale *k*-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
 - $V \subset Y \subset G$ & codim $(G \setminus Y, G) \ge 2$
 - $\begin{array}{l} \ \mathcal{T} = \mathrm{Res}_{\mathrm{K}|k} \mathbb{G}_{\mathrm{m}} \subset \mathrm{R} \subset \mathrm{Res}_{\mathrm{K}|k} \mathbb{A}^{1} = \mathbb{A}^{\mathrm{d}} \ \& \\ \mathsf{codim}(\mathbb{A}^{d} \setminus R, \mathbb{A}^{d}) \geq 2 \end{array}$
- some kind of fibration argument completes the proof.

伺下 イヨト イヨ

- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale k-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where
 - $V \subset Y \subset G \& \operatorname{codim}(G \setminus Y, G) \geq 2$
 - $T = \operatorname{Res}_{K|k} \mathbb{G}_{m} \subset \operatorname{Res}_{K|k} \mathbb{A}^{1} = \mathbb{A}^{d} \&$ $\operatorname{codim}(\mathbb{A}^{d} \setminus R, \mathbb{A}^{d}) \geq 2$
 - more or less $\phi: \mathcal{G} \to \mathbb{A}^d$ up to some 2-codimensional things

some kind of fibration argument completes the proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale *k*-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where

$$- V \subset Y \subset G \& \operatorname{codim}(G \setminus Y, G) \geq 2$$

- $\begin{array}{l} \ \mathcal{T} = \mathrm{Res}_{\mathrm{K}|k} \mathbb{G}_{\mathrm{m}} \subset \mathrm{R} \subset \mathrm{Res}_{\mathrm{K}|k} \mathbb{A}^{1} = \mathbb{A}^{\mathrm{d}} \ \& \\ \mathsf{codim}(\mathbb{A}^{d} \setminus R, \mathbb{A}^{d}) \geq 2 \end{array}$
- more or less $\phi: G \to \mathbb{A}^d$ up to some 2-codimensional things
- most fibres look like $B^{\mathrm{u}} imes B^{\mathrm{u}}$
- some kind of fibration argument completes the proof.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- $\phi: V \simeq B^{u} \times B \to T$ induces an isomorphism of Galois module $\bar{k}[T]^{\times}/\bar{k}^{\times} \to \bar{k}[V]^{\times}/\bar{k}^{\times}$
- G: ss sc $\implies \bar{k}[V]^{\times}/\bar{k}^{\times}$ is a permutation Galois module.
- T is quasi-trivial: $T = \operatorname{Res}_{K|k} \mathbb{G}_{m,K}$ for a certain finite étale *k*-algebra K.
- In such a case ϕ extends to a smooth morphism $\phi: Y \to R$ with non-empty geometrically integral fibres, where

$$- V \subset Y \subset G \& \operatorname{codim}(G \setminus Y, G) \geq 2$$

$$egin{aligned} & -\mathcal{T}=\mathrm{Res}_{\mathrm{K}|\mathrm{k}}\mathbb{G}_{\mathrm{m}}\subset\mathrm{R}\subset\mathrm{Res}_{\mathrm{K}|\mathrm{k}}\mathbb{A}^{1}=\mathbb{A}^{\mathrm{d}}\ \&\ \mathsf{codim}(\mathbb{A}^{d}\setminus R,\mathbb{A}^{d})\geq2 \end{aligned}$$

- more or less $\phi: \mathcal{G} \to \mathbb{A}^d$ up to some 2-codimensional things
- most fibres look like $B^{\mathrm{u}} imes B^{\mathrm{u}}$
- some kind of fibration argument completes the proof.

伺 ト イヨ ト イヨト

 SL_n verifies arithmetic purity for strong approximation off $S \neq \emptyset$: For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

→ < Ξ → <</p>

 SL_n verifies arithmetic purity for strong approximation off $S \neq \emptyset$: For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

Corollary

Over any number field k, GL_n verifies 3-codimensional arithmetic purity for str. approx. with BM obs. off ∞_k .

A 3 3 4

 SL_n verifies arithmetic purity for strong approximation off $S \neq \emptyset$: For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

Corollary

Over any number field k, GL_n verifies 3-codimensional arithmetic purity for str. approx. with BM obs. off ∞_k .

Remark. $\bar{k}[GL_n]^{\times} \neq \bar{k}^{\times}$

/⊒ ▶ < ⊒ ▶ <

 SL_n verifies arithmetic purity for strong approximation off $S \neq \emptyset$: For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

Corollary

Over any number field k, GL_n verifies 3-codimensional arithmetic purity for str. approx. with BM obs. off ∞_k .

Remark. $\bar{k}[GL_n]^{\times} \neq \bar{k}^{\times}$ In our previous definition, we discuss codimension 2 arithmetic purity. The additional 1(=3-2) dimension comes from \mathbb{G}_m . To be more precise...

・ 同 ト ・ 三 ト ・

Definition

We say that X satisfies Zariski open strong approximation with Brauer-Manin obstruction off S, if for any non-empty Zariski open $U \subset X$, U(k) is dense in $pr^{S}(X(\mathbf{A}_{k})^{Br}) \subset X(\mathbf{A}_{k}^{S})$.

Definition

We say that X satisfies Zariski open strong approximation with Brauer-Manin obstruction off S, if for any non-empty Zariski open $U \subset X$, U(k) is dense in $pr^{S}(X(\mathbf{A}_{k})^{Br}) \subset X(\mathbf{A}_{k}^{S})$.

Lemma (Dirichlet's unit theorem)

The k-torus \mathbb{G}_m satisfies Zariski open str. approx. with BM obs. if and only if the number field k is neither \mathbb{Q} nor an imaginary quadratic field.

Definition

We say that X satisfies Zariski open strong approximation with Brauer-Manin obstruction off S, if for any non-empty Zariski open $U \subset X$, U(k) is dense in $pr^{S}(X(\mathbf{A}_{k})^{Br}) \subset X(\mathbf{A}_{k}^{S})$.

Lemma (Dirichlet's unit theorem)

The k-torus \mathbb{G}_m satisfies Zariski open str. approx. with BM obs. if and only if the number field k is neither \mathbb{Q} nor an imaginary quadratic field.

Corollary

 GL_n verifies arithmetic purity (codim 2) for str. approx. with BM obs. off ∞_k if and only if the number field k is neither \mathbb{Q} nor an imaginary quadratic field.

ヘロト ヘアト ヘリト ヘ

$GL_n \rightsquigarrow most general setting$

- G connected linear algebraic group
- $G^{\text{red}} = G/G^{\text{u}}, \ G^{\text{ss}} = [G^{\text{red}}, G^{\text{red}}],$ $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}, \ G^{\text{sc}} \to G^{\text{ss}}$

- $GL_n \rightsquigarrow most general setting$
 - G connected linear algebraic group

•
$$G^{\text{red}} = G/G^{\text{u}}, \ G^{\text{ss}} = [G^{\text{red}}, G^{\text{red}}],$$

 $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}, \ G^{\text{sc}} \to G^{\text{ss}}$

Linear algebraic groups

 $GL_n \rightsquigarrow most general setting$

• G connected linear algebraic group

•
$$G^{\text{red}} = G/G^{\text{u}}, \ G^{\text{ss}} = [G^{\text{red}}, G^{\text{red}}],$$

 $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}, \ G^{\text{sc}} \to G^{\text{ss}}$

Theorem

Suppose that G^{sc} verifies arithmetic purity for str. approx. off ∞_k (in particular when it is quasi-split). (1) G verifies arithmetic purity of codimension $(2 + \dim G^{tor})$ for str. approx. with BM obs. off ∞_k .

Linear algebraic groups

$GL_n \rightsquigarrow most general setting$

• G connected linear algebraic group

•
$$G^{\text{red}} = G/G^{\text{u}}, \ G^{\text{ss}} = [G^{\text{red}}, G^{\text{red}}],$$

 $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}, \ G^{\text{sc}} \to G^{\text{ss}}$

Theorem

Suppose that G^{sc} verifies arithmetic purity for str. approx. off ∞_k (in particular when it is quasi-split).

(1) G verifies arithmetic purity of codimension $(2 + \dim G^{tor})$ for str. approx. with BM obs. off ∞_k .

(2) if furthermore $G^{tor} \neq 1$ satisfies Zariski open str. approx. with BM obs., then G verifies arithmetic purity of codimension $(1 + \dim G^{tor})$ for str. approx. with BM obs. off ∞_k .

▲ □ ▶ ▲ □ ▶ ▲

Theorem

Let G be a connected linear group and $H \subset G$ be a connected closed subgroup. Let X be a G-variety containing G/H as a Zariski open dense G-orbit. Assume that $\bar{k}[X]^{\times} = \bar{k}^{\times}$. If G^{sc} verifies arithmetic purity (in particular when it is quasi-split), then X satisfies arithmetic purity for str. approx. with BM obs. off $S \neq \emptyset$.

• Example: $X \subset \mathbb{A}^4$ defined by $x_1x_2 + x_3x_4 = c$ where $c \in k^{\times}$, then X verifies arithmetic purity.

Theorem

Let G be a connected linear group and $H \subset G$ be a connected closed subgroup. Let X be a G-variety containing G/H as a Zariski open dense G-orbit. Assume that $\bar{k}[X]^{\times} = \bar{k}^{\times}$. If G^{sc} verifies arithmetic purity (in particular when it is quasi-split), then X satisfies arithmetic purity for str. approx. with BM obs. off $S \neq \emptyset$.

• Example: $X \subset \mathbb{A}^4$ defined by $x_1x_2 + x_3x_4 = c$ where $c \in k^{\times}$, then X verifies arithmetic purity.

The following question is still open.

Question

What about arithmetic purity for semi-simple simply connected groups (not necessarily quasi-split)?

∃ ▶ ∢

The following question is still open.

Question

What about arithmetic purity for semi-simple simply connected groups (not necessarily quasi-split)?

Merci de votre attention!