Strong approximation for Abelian varieties punctured at torsion points 去掉绕点后的某些阿贝尔簇的强逼近性质

梁 永祺

中国科学技术大学

2018年10月21日

中国数学会学术年会 - 贵阳

Notation

- *k* : number field
- $\Omega_k = \Omega_k^f \sqcup \infty_k$ set of places
- k_v for $v \in \Omega_k$
- $\mathcal{O}_v \subset k_v$ for $v \in \Omega^f_k$
- A_k ring of adèles
- $S \subset \Omega_k$ finite subset \mathbf{A}_k^S adèles *without S*-components $pr^S : \mathbf{A}_k \to \mathbf{A}_k^S$ natural projection
- X : smooth variety over k (variety = separated scheme of finite type, geometrically integral)
- $\mathsf{Br}(X) = \mathsf{H}^2_{\mathrm{\acute{e}t}}(X,\mathbb{G}_m)$ the cohomological Brauer group

• $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally

- Weak approximation holds if *X*(*k*) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if *X*(*k*) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U

4 3 6 4 3 6

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_{\nu})_{\nu} \in \prod_{S_0} M_{\nu} \times \prod_{\nu \notin S_0} U(k_{\nu})$ with $M_{\nu} \subset U(k_{\nu})$ open,

Weak approximation

- $X(k) \hookrightarrow \prod_{v \in \Omega} X(k_v)$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)$ with $M_v \subset U(k_v)$ open, $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)$, $M_v \subset X(k_v)$ open

Weak approximation

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)$ with $M_v \subset U(k_v)$ open, $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v), M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)]$

Weak approximation

- $X(k) \hookrightarrow \prod_{\nu \in \Omega} X(k_{\nu})$ diagonally
- Weak approximation holds if X(k) is dense w.r.t. product topology
- $\emptyset \neq U \subset X$ Zariski open
- weak approximation on $X \implies$ weak approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)$ with $M_v \subset U(k_v)$ open, $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)$, $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} X(k_v)]$ $\implies x \in U(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} U(k_v)]$, don't need to care about $v \notin S_0$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m X satisfies strong approximation off S U does not satisfy strong approximation off S

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m X satisfies strong approximation off S U does not satisfy strong approximation off S

▲ 同 ▶ ▲ 国 ▶ ▲ 国

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

• • = • • = •

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

4 3 5 4

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:

- strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} U(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open

Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

- $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally
- Strong approximation off *S* holds if *X*(*k*) is dense w.r.t. *adélic topology*
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{U}(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)]$
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

• • • • • • •

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off S holds if X(k) is dense w.r.t. adélic topology
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{U}(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)]$ $\implies x \in U(k)$, but $\Rightarrow x \in \mathcal{U}(\mathcal{O}_v)$ for $v \notin S_0$
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m X satisfies strong approximation off S U does not satisfy strong approximation off S

・ロト ・ 同ト ・ ヨト ・ ヨト

• $X(k) \hookrightarrow X(\mathbf{A}_k^S)$ diagonally

- Strong approximation off S holds if X(k) is dense w.r.t. adélic topology
- subtle difference between product topology and adélic topology:
 - strong approximation on $X \Rightarrow$ strong approximation on U $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{U}(\mathcal{O}_v)$ with $M_v \subset U(k_v)$ open $(u_v)_v \in \prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)$ with $M_v \subset X(k_v)$ open $\exists x \in X(k) \cap [\prod_{S_0} M_v \times \prod_{v \notin S_0} \mathcal{X}(\mathcal{O}_v)]$ $\implies x \in U(k)$, but $\Rightarrow x \in \mathcal{U}(\mathcal{O}_v)$ for $v \notin S_0$
- Example: k = Q, S ≠ Ø, X = A¹, U = A¹ \ {0} = G_m
 X satisfies strong approximation off S
 U does not satisfy strong approximation off S

• Why?
$$(X = \mathbb{A}^1, U = \mathbb{G}_m)$$

- 1. étale fundamental groups
- 2. Brauer groups
- in such a case

▲御▶ ▲ 臣▶ ▲ 臣▶

э

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups
- 2. Brauer groups
- in such a case

3 b 4

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups
- in such a case

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$

Theorem (Minchev)

Let V be a variety defined over a number field k. If $V_{\bar{k}}$ is not simply connected $\pi_1^{\acute{e}t}(V_{\bar{k}}) \neq 0$, then V can never satisfy strong approximation.

- 2. Brauer groups
- in such a case

Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$

Theorem (Minchev)

Let V be a variety defined over a number field k. If $V_{\bar{k}}$ is not simply connected $\pi_1^{\acute{e}t}(V_{\bar{k}}) \neq 0$, then V can never satisfy strong approximation.

- 2. Brauer groups
- in such a case

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite.

• in such a case

• Why? $(X = \mathbb{A}^1, U = \mathbb{G}_m)$

Apart from the subtle adélic topology, two more reasons:

- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite.

In 1970s, Manin made use of the Brauer group to define an obstruction to approximation properties.

in such a case

• Why? $(X = \mathbb{A}^1, U = \mathbb{G}_m)$

Apart from the subtle adélic topology, two more reasons:

- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite.

In 1970s, Manin made use of the Brauer group to define an obstruction to approximation properties.

in such a case

• Why? $(X = \mathbb{A}^1, U = \mathbb{G}_m)$

Apart from the subtle adélic topology, two more reasons:

- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite.

In 1970s, Manin made use of the Brauer group to define an obstruction to approximation properties.

in such a case

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite.

In 1970s, Manin made use of the Brauer group to define an obstruction to approximation properties.

Question (Wittenberg 2014)

```
What happens if Z = X \setminus U is of codimension \geq 2 ?
```

• in such a case

・ロッ ・雪 ・ ・ ヨ ・

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite.

In 1970s, Manin made use of the Brauer group to define an obstruction to approximation properties.

Question (Wittenberg 2014)

What happens if $Z = X \setminus U$ is of codimension ≥ 2 ?

- in such a case
 - Zariski-Nagata: $\pi_1^{ ext{\acute{e}t}}(X_{ar{k}})=\pi_1^{ ext{\acute{e}t}}(U_{ar{k}})$

マロト イヨト イヨト

- Why? (X = A¹, U = G_m)
 Apart from the subtle adélic topology, two more reasons:
- 1. étale fundamental groups $\pi_1^{\text{ét}}(X_{\bar{k}}) = 0$ while $\pi_1^{\text{ét}}(U_{\bar{k}}) = \hat{\mathbb{Z}}$
- 2. Brauer groups

 $\operatorname{Br}(X)/\operatorname{Br}(k) = 0$ while $\operatorname{Br}_1(U)/\operatorname{Br}(k) \simeq \operatorname{H}^1(k, \mathbb{Q}/\mathbb{Z})$ is infinite.

In 1970s, Manin made use of the Brauer group to define an obstruction to approximation properties.

Question (Wittenberg 2014)

What happens if $Z = X \setminus U$ is of codimension ≥ 2 ?

- in such a case
 - Zariski-Nagata: $\pi_1^{ ext{\acute{e}t}}(X_{ar{k}})=\pi_1^{ ext{\acute{e}t}}(U_{ar{k}})$
 - purity for étale cohomology: Br(X) = Br(U)

- $X = \mathbb{A}^n$ satisfies strong approximation off $S \neq \emptyset$
- In this case, $\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$
- In general, should take into account the Brauer-Manin obstruction

3 1 4

• $X = \mathbb{A}^n$ satisfies strong approximation off $S \neq \emptyset$

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of \mathbb{A}^n such that $\operatorname{codim}(Z, \mathbb{A}^n) \ge 2$. Then $\mathbb{A}^n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

- In this case, $\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$
- In general, should take into account the Brauer-Manin obstruction

• $X = \mathbb{A}^n$ satisfies strong approximation off $S \neq \emptyset$

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of \mathbb{A}^n such that $\operatorname{codim}(Z, \mathbb{A}^n) \ge 2$. Then $\mathbb{A}^n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

• In this case,
$$\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$$

• In general, should take into account the Brauer-Manin obstruction

• • • • • • •

• $X = \mathbb{A}^n$ satisfies strong approximation off $S \neq \emptyset$

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of \mathbb{A}^n such that $\operatorname{codim}(Z, \mathbb{A}^n) \ge 2$. Then $\mathbb{A}^n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

• In this case,
$$\frac{\operatorname{Br}(X)}{\operatorname{Br}(k)} = \frac{\operatorname{Br}(X \setminus Z)}{\operatorname{Br}(k)} = 0$$

• In general, should take into account the Brauer-Manin obstruction

Brauer-Manin obstruction

• Manin's pairing:

- Fact: $X(k) \subseteq \overline{X(k)} \subseteq X(\mathbf{A}_k)^{\mathsf{Br}} \subseteq X(\mathbf{A}_k)$
- $S \subseteq \Omega_k$ finite subset $pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections
- Similarly, we define Weak Approximation with Brauer-Manin obstruction using the product topology of X(k_v) instead of the adélic topology.

Brauer-Manin obstruction

- Manin's pairing: $X(\mathbf{A}_k) \times Br(X) \to \mathbb{Q}/\mathbb{Z}$ $((x_v)_{v \in \Omega_k}, b) \mapsto \sum_{v \in \Omega_k} inv_v(b(x_v)),$ where $inv_v : Br(k_v) \to \mathbb{Q}/\mathbb{Z}$ comes from local class field theory • Fact: $X(k) \subseteq \overline{X(k)} \subseteq X(\mathbf{A}_k)^{Br} \subseteq X(\mathbf{A}_k)$
- $S \subseteq \Omega_k$ finite subset $pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections
- Similarly, we define Weak Approximation with Brauer-Manin obstruction using the product topology of X(k_v) instead of the adélic topology.

3 1 4

Brauer-Manin obstruction

- Manin's pairing: $X(\mathbf{A}_k) \times Br(X) \rightarrow \mathbb{Q}/\mathbb{Z}$ $((x_v)_{v \in \Omega_k}, b) \mapsto \sum_{v \in \Omega_k} inv_v(b(x_v)),$ where $inv_v : Br(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ comes from local class field theory • Fact: $X(k) \subseteq \overline{X(k)} \subseteq X(\mathbf{A}_k)^{Br} \subseteq X(\mathbf{A}_k)$
- $S \subseteq \Omega_k$ finite subset $pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections
- Similarly, we define Weak Approximation with Brauer-Manin obstruction using the product topology of X(k_v) instead of the adélic topology.

Brauer-Manin obstruction

- Manin's pairing: $X(\mathbf{A}_k) \times Br(X) \to \mathbb{Q}/\mathbb{Z}$ $((x_v)_{v \in \Omega_k}, b) \mapsto \sum_{v \in \Omega_k} inv_v(b(x_v)),$ where $inv_v : Br(k_v) \to \mathbb{Q}/\mathbb{Z}$ comes from local class field theory
- Fact: $X(k) \subseteq \overline{X(k)} \subseteq \overline{X(\mathbf{A}_k)}^{\mathsf{Br}} \subseteq X(\mathbf{A}_k)$
- $S \subseteq \Omega_k$ finite subset $pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections
- Similarly, we define Weak Approximation with Brauer-Manin obstruction using the product topology of $X(k_v)$ instead of the adélic topology.

Brauer-Manin obstruction

- Manin's pairing: $X(\mathbf{A}_k) \times Br(X) \rightarrow \mathbb{Q}/\mathbb{Z}$ $((x_v)_{v \in \Omega_k}, b) \mapsto \sum_{v \in \Omega_k} inv_v(b(x_v)),$ where $inv_v : Br(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ comes from local class field theory • Fact: $X(k) \subseteq \overline{X(k)} \subseteq \overline{X(\mathbf{A}_k)}^{Br} \subseteq X(\mathbf{A}_k)$
- $S \subseteq \Omega_k$ finite subset $pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections

Definition

We say that X satisfies strong approximation with Brauer-Manin obstruction off S if $\overline{X(k)} = pr^S(X(\mathbf{A}_k)^{\mathrm{Br}}) \subset X(\mathbf{A}_k^S)$.

 Similarly, we define Weak Approximation with Brauer-Manin obstruction using the product topology of X(k_v) instead of the adélic topology.

• • = • • = •

Brauer-Manin obstruction

- Manin's pairing: $X(\mathbf{A}_k) \times Br(X) \rightarrow \mathbb{Q}/\mathbb{Z}$ $((x_v)_{v \in \Omega_k}, b) \mapsto \sum_{v \in \Omega_k} inv_v(b(x_v)),$ where $inv_v : Br(k_v) \rightarrow \mathbb{Q}/\mathbb{Z}$ comes from local class field theory • Fact: $X(k) \subseteq \overline{X(k)} \subseteq X(\mathbf{A}_k)^{Br} \subseteq X(\mathbf{A}_k)$
- $S \subseteq \Omega_k$ finite subset $pr^S : X(\mathbf{A}_k) \to X(\mathbf{A}_k^S)$ natural projections

Definition

We say that X satisfies strong approximation with Brauer-Manin obstruction off S if $\overline{X(k)} = pr^S(X(\mathbf{A}_k)^{\mathrm{Br}}) \subset X(\mathbf{A}_k^S)$.

• Similarly, we define Weak Approximation with Brauer-Manin obstruction using the product topology of $X(k_v)$ instead of the adélic topology.

• Recall

Question (We call it arithmetic purity)

Suppose that X satisfies approximation properties, what about $X \setminus Z$ for a closed subvariety Z of codimension ≥ 2 ?

• What about strong approximation with Brauer-Manin obstruction.

• Recall

Question (We call it arithmetic purity)

Suppose that X satisfies approximation properties, what about $X \setminus Z$ for a closed subvariety Z of codimension ≥ 2 ?

Theorem (well known)

Arithmetic purity holds for *weak* approximation with Brauer-Manin obstruction.

• What about strong approximation with Brauer-Manin obstruction.

→ < Ξ → <</p>

• Recall

Question (We call it arithmetic purity)

Suppose that X satisfies approximation properties, what about $X \setminus Z$ for a closed subvariety Z of codimension ≥ 2 ?

Theorem (well known)

Arithmetic purity holds for *weak* approximation with Brauer-Manin obstruction.

• What about strong approximation with Brauer-Manin obstruction.

- Positive answers
- Negative answers

▲御▶ ▲理▶ ▲理≯

æ

Positive answers

→ < Ξ → <</p>

э

• Generalising examples \mathbb{A}^n and \mathbb{P}^n

► < Ξ > <</p>

-

э

Generalising examples Aⁿ and Pⁿ First result:

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that $\bar{k}[X]^{\times} = \bar{k}^{\times}$. Then X verifies arithmetic purity for str. approx. with BM obs. off $S \neq \emptyset$.

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group defined over a number field. Suppose that G is quasi-split (a Borel subgroup is defined over k). Then G verifies arithmetic purity for strong approximation off $S \neq \emptyset$.

• Example: SL_n

For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

• Open problem: remove the quasi-splitness condition.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group defined over a number field. Suppose that G is quasi-split (a Borel subgroup is defined over k). Then G verifies arithmetic purity for strong approximation off $S \neq \emptyset$. (In this case Br(G)/Br(k) = 0.)

- Example: *SL_n*
 - For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.
- Open problem: remove the quasi-splitness condition.

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group defined over a number field. Suppose that G is quasi-split (a Borel subgroup is defined over k). Then G verifies arithmetic purity for strong approximation off $S \neq \emptyset$. (In this case Br(G)/Br(k) = 0.)

• Example: SL_n

For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

• Open problem: remove the quasi-splitness condition.

Image: A Image: A

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group defined over a number field. Suppose that G is quasi-split (a Borel subgroup is defined over k). Then G verifies arithmetic purity for strong approximation off $S \neq \emptyset$. (In this case Br(G)/Br(k) = 0.)

• Example: SL_n

For any Zariski closed subset Z such that $\operatorname{codim}(Z, SL_n) \ge 2$, $SL_n \setminus Z$ satisfies strong approximation off $S \neq \emptyset$.

• Open problem: remove the quasi-splitness condition.

Proposition

(1) GL_n verifies arithmetic purity (codim 2) for str. approx. with BM obs. off ∞_k if and only if the number field k is neither \mathbb{Q} nor an imaginary quadratic field.

• The additional 1(= 3 - 2) dimension comes from $\mathbb{G}_m = GL_n/SL_n$ and Dirichlet's unit theorem.

伺 ト イヨト イヨト

Proposition

(1) GL_n verifies arithmetic purity (codim 2) for str. approx. with BM obs. off ∞_k if and only if the number field k is neither \mathbb{Q} nor an imaginary quadratic field.

(2)Over any number field k, GL_n verifies 3-codimensional arithmetic purity for str. approx. with BM obs. off ∞_k .

• The additional 1(= 3 - 2) dimension comes from $\mathbb{G}_m = GL_n/SL_n$ and Dirichlet's unit theorem.

伺 ト イヨ ト イヨト

Proposition

(1) GL_n verifies arithmetic purity (codim 2) for str. approx. with BM obs. off ∞_k if and only if the number field k is neither \mathbb{Q} nor an imaginary quadratic field.

(2)Over any number field k, GL_n verifies 3-codimensional arithmetic purity for str. approx. with BM obs. off ∞_k .

• The additional 1(= 3 - 2) dimension comes from $\mathbb{G}_m = GL_n/SL_n$ and Dirichlet's unit theorem.

$GL_n \rightsquigarrow most general setting$

- G connected linear algebraic group
- $G^{\text{red}} = G/G^{\text{u}}, \ G^{\text{ss}} = [G^{\text{red}}, G^{\text{red}}],$ $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}, \ G^{\text{sc}} \to G^{\text{ss}}$

$GL_n \rightsquigarrow most general setting$

• G connected linear algebraic group

•
$$G^{\text{red}} = G/G^{\text{u}}, \ G^{\text{ss}} = [G^{\text{red}}, G^{\text{red}}]$$

 $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}, \ G^{\text{sc}} \to G^{\text{ss}}$

Linear algebraic groups

 $GL_n \rightsquigarrow most general setting$

• G connected linear algebraic group

•
$$G^{\text{red}} = G/G^{\text{u}}, \ G^{\text{ss}} = [G^{\text{red}}, G^{\text{red}}],$$

 $G^{\text{tor}} = G^{\text{red}}/G^{\text{ss}}, \ G^{\text{sc}} \to G^{\text{ss}}$

Theorem

Suppose that G^{sc} verifies arithmetic purity for str. approx. off ∞_k (in particular when it is quasi-split). G verifies arithmetic purity of codimension (2 + dim G^{tor}) for str. approx. with BM obs. off ∞_k .

Negative answers

▶ < ∃ ▶</p>

æ

Example (Y. Cao & F. Xu 2013):
k = Q or an imaginary quadratic field
X = G_m × A¹ satisfies str. approx. with BM obs. off ∞_k (Harari 2008, arithmetic duality theorems)

• X fails arithmetic purity

Example (Y. Cao & F. Xu 2013): k = Q or an imaginary quadratic field - X = G_m × A¹ satisfies str. approx. with BM obs. off ∞_k (Harari 2008, arithmetic duality theorems) - U = X \ {one rational point} does not satisfy str. approx. with BM obs. off ∞_k

• X fails arithmetic purity

Example (Y. Cao & F. Xu 2013): k = Q or an imaginary quadratic field - X = G_m × A¹ satisfies str. approx. with BM obs. off ∞_k (Harari 2008, arithmetic duality theorems) - U = X \ {one rational point} does not satisfy str. approx. with BM obs. off ∞_k

• X fails arithmetic purity

Theorem (L. 2018)

E : elliptic curve, rank(E(k)) > 0 A : Abelian variety, rank(A(k)) = 0, dimA \neq 0 $T \subset E \times A$ a finite set of torsion points $X = (E \times A) \setminus T$ If $pr_A(T)$ contains a k-rational point, then X does not satisfy Str. Approx. with BM obs. off ∞_k . The converse is also true if $III(E \times A, k) < \infty$.

• Remark: the case where $T = \{O\}$ was known in [Cao-Liang-Xu 2017].

Theorem (L. 2018)

E : elliptic curve, rank(E(k)) > 0A : Abelian variety, rank(A(k)) = 0, $dimA \neq 0$ $T \subset E \times A$ a finite set of torsion points $X = (E \times A) \setminus T$ If $pr_A(T)$ contains a k-rational point, then X does not satisfy Str. Approx. with BM obs. off ∞_k . The converse is also true if $III(E \times A, k) < \infty$.

• Remark: the case where $T = \{O\}$ was known in [Cao-Liang-Xu 2017].

The proof use fibration methods with the following lemma.

Lemma

E: elliptic curve, rank(E(k)) > 0. $T \subset E$ finite set of torsion points. $U = E \setminus T$. Then U does not satisfy str. approx. with BM obs. w.r.t Br(E) off ∞_k .

- This lemma was known to [Harari-Voloch 2010] only in the very special case: k = Q, E : y² = x³ + 3, rank(E(Q)) = 1 and T = {O}.
- Final remark: As a consequence, $E \setminus O$ does not satisfy str. approx. with BM obs.off ∞_k

・ 同 ト ・ 三 ト ・

The proof use fibration methods with the following lemma.

Lemma

E: elliptic curve, rank(E(k)) > 0. $T \subset E$ finite set of torsion points. $U = E \setminus T$. Then U does not satisfy str. approx. with BM obs. w.r.t Br(E) off ∞_k .

- This lemma was known to [Harari-Voloch 2010] only in the very special case: k = Q, E : y² = x³ + 3, rank(E(Q)) = 1 and T = {O}.
- Final remark: As a consequence, $E \setminus O$ does not satisfy str. approx. with BM obs.off ∞_k

A (1) < A (1) < A (1) < A (1) </p>

The proof use fibration methods with the following lemma.

Lemma

E: elliptic curve, rank(E(k)) > 0. $T \subset E$ finite set of torsion points. $U = E \setminus T$. Then U does not satisfy str. approx. with BM obs. w.r.t Br(E) off ∞_k .

- This lemma was known to [Harari-Voloch 2010] only in the very special case: k = Q, E : y² = x³ + 3, rank(E(Q)) = 1 and T = {O}.
- Final remark: As a consequence, $E \setminus O$ does not satisfy str. approx. with BM obs.off ∞_k

• • • • • • •

Thank you for your attention ! 谢谢大家 !