Strong approximation for Abelian varieties

punctured at torsion points
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Strong approx. for punctured Abelian varieties



k : number field

Qi = QZ L ook set of places
k, for v € Q

O, C ky, for v € Qf

A ring of adéles

S C Q finite subset
A3 adéles without S-components
pro : A, — A} natural projection

@ X : smooth variety over k (variety = separated scheme of
finite type, geometrically integral)

e Br(X) = HZ%(X,G,) the cohomological Brauer group
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e Weak approximation holds if X (k) is dense w.r.t. product
topology

e ) # U C X Zariski open

@ weak approximation on X — weak approximation on U
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Weak approximation

o X(k) = [I,cqX(k,) diagonally

e Weak approximation holds if X(k) is dense w.r.t. product
topology

e () # U C X Zariski open

@ weak approximation on X = weak approximation on U
(uv)v € I1sy My x [1,¢s, U(ky) with M, C U(ky) open,
(w)v € [Isy My x [1,gs, X(kv), My C X(kv) open
Sx € X(k) 1 [TTs, My % [T, 5, X (k)]

— x € U(k) N [[Is, Mv x [1,gs, U(kv)], don’t need to care
about v ¢ 5o
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Strong approximation
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Strong approximation

o X(k) < X(A?) diagonally

e Strong approximation off S holds if X (k) is dense w.r.t. adélic
topology

@ subtle difference between product topology and adélic
topology:
- strong approximation on X = strong approximation on U
(uv)yv € [Is, My x [, g5, U(Ov) with M, C U(k,) open
(uv)v € IIsy My x [],¢s, X(Ov) with M, C X(ky) open
Ix € X(k) N l1s, My x I1,¢s, X(OV)]
= x € U(k), but # x e U(O,) for v ¢ So

e Example: k=Q, S#0, X =Al, U=A'\ {0} =G,
X satisfies strong approximation off S
U does not satisfy strong approximation off S
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e Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups
7§ (Xz) = 0 while 78t(Uz) = Z

2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H(k,Q/Z) is
infinite.
In 1970s, Manin made use of the Brauer group to define an
obstruction to approximation properties.

Question (Wittenberg 2014)
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@ in such a case ) )
- Zariski-Nagata: 7{"(Xz) = 75" (Ug)
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Strong approximation

o Why? (X = Al, U=G,)
Apart from the subtle adélic topology, two more reasons:

1. étale fundamental groups
m$8(Xz) = 0 while 78t(Uz) = Z

2. Brauer groups
Br(X)/Br(k) = 0 while Bry(U)/Br(k) ~ H}(k,Q/Z) is
infinite.
In 1970s, Manin made use of the Brauer group to define an
obstruction to approximation properties.

Question (Wittenberg 2014)

What happens if Z = X\ U is of codimension > 2 7

@ in such a case ) )
- Zariski-Nagata: 7{"(Xz) = 75" (Uy)
- purity for étale cohomology: Br(X) = Br(U)
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First example: the affine space

@ X = A" satisfies strong approximation off S # ()
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Let Z be a Zariski closed subset of A" such that codim(Z,A") > 2.
Then A"\ Z satisfies strong approximation off S # ().
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@ X = A" satisfies strong approximation off S # ()

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of A" such that codim(Z,A") > 2.
Then A"\ Z satisfies strong approximation off S # ().

Br(X) Br(X\ 2Z)
Br(k)  Br(k)

@ In this case, =0
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First example: the affine space

@ X = A" satisfies strong approximation off S # ()

Theorem (D. Wei; Y. Cao & F. Xu)

Let Z be a Zariski closed subset of A" such that codim(Z,A") > 2.
Then A"\ Z satisfies strong approximation off S # ().

Br(X) Br(X\ 2)

Br(k)  Br(k)

@ In general, should take into account the Brauer-Manin
obstruction

@ In this case, =0
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Brauer-Manin obstruction

@ Manin's pairing:
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@ Manin's pairing:
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Brauer-Manin obstruction

@ Manin's pairing:
X(Ax) x Br(X) — Q/Z
((x)veaes b) = D invi(b(x.)),

veEQ
where inv, : Br(k,) — Q/Z comes from local class field theory

o Fact: X(k) C X(k) C X(A,)B" C X(Ax)
@ S C Qy finite subset
pro : X(Ax) — X(A?) natural projections

Definition

We say that X satisfies strong approximation with Brauer-Manin
obstruction off S if X(k) = pr3(X(Ax)B") c X(A?).
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Brauer-Manin obstruction

@ Manin's pairing:
X(Ax) x Br(X) — Q/Z
((x)veaes b) = D invi(b(x.)),

veEQ
where inv, : Br(k,) — Q/Z comes from local class field theory

o Fact: X(k) C X(k) C X(A,)B" C X(Ax)
@ S C Qy finite subset
pro : X(Ax) — X(A?) natural projections

Definition

We say that X satisfies strong approximation with Brauer-Manin
obstruction off S if X(k) = pr3(X(Ax)B") c X(A?).

@ Similarly, we define Weak Approximation with Brauer-Manin
obstruction using the product topology of X(k,) instead of the
adélic topology.
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Arithmetic purity

@ Recall

Question (We call it arithmetic purity)

Suppose that X satisfies approximation properties, what about
X\ Z for a closed subvariety Z of codimension > 27
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Arithmetic purity

@ Recall

Question (We call it arithmetic purity)

Suppose that X satisfies approximation properties, what about
X\ Z for a closed subvariety Z of codimension > 27

Theorem (well known)

Arithmetic purity holds for weak approximation with Brauer-Manin
obstruction.

@ What about strong approximation with Brauer-Manin
obstruction.
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Answers

@ Positive answers

@ Negative answers
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@ Generalising examples A" and P"
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Positive answers

@ Generalising examples A" and P”
First result:

Theorem (D. Wei 2014)

Let X be a smooth toric variety such that k[X]* = k*. Then X
verifies arithmetic purity for str. approx. with BM obs. off S # ().
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Positive answers

@ joint work with Y. Cao and F. Xu

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group
defined over a number field. Suppose that G is quasi-split (a Borel
subgroup is defined over k). Then G verifies arithmetic purity for
strong approximation off S # ().

Strong approx. for punctured Abelian varieties 12/19



Positive answers

@ joint work with Y. Cao and F. Xu

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group
defined over a number field. Suppose that G is quasi-split (a Borel
subgroup is defined over k). Then G verifies arithmetic purity for
strong approximation off S # (). (In this case Br(G)/Br(k) =0.)

Strong approx. for punctured Abelian varieties 12/19



Positive answers

@ joint work with Y. Cao and F. Xu

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group
defined over a number field. Suppose that G is quasi-split (a Borel
subgroup is defined over k). Then G verifies arithmetic purity for
strong approximation off S # (). (In this case Br(G)/Br(k) =0.)

e Example: SL,
For any Zariski closed subset Z such that codim(Z, SL,,) > 2,
SL, \ Z satisfies strong approximation off S # ().

Strong approx. for punctured Abelian varieties 12/19



Positive answers

@ joint work with Y. Cao and F. Xu

Theorem (Cao-L.-Xu 2017)

Let G be a semi-simple simply connected linear algebraic group
defined over a number field. Suppose that G is quasi-split (a Borel
subgroup is defined over k). Then G verifies arithmetic purity for
strong approximation off S # (). (In this case Br(G)/Br(k) =0.)

e Example: SL,
For any Zariski closed subset Z such that codim(Z, SL,,) > 2,
SL, \ Z satisfies strong approximation off S # ().

@ Open problem: remove the quasi-splitness condition.
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GL,

Proposition

(1) GL, verifies arithmetic purity (codim 2) for str. approx. with
BM obs. off coy if and only if the number field k is neither Q nor
an imaginary quadratic field.
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GL,

Proposition

(1) GL, verifies arithmetic purity (codim 2) for str. approx. with
BM obs. off ooy if and only if the number field k is neither Q nor
an imaginary quadratic field.

(2)Over any number field k, GL, verifies 3-codimensional
arithmetic purity for str. approx. with BM obs. off coy.

@ The additional 1(= 3 — 2) dimension comes from
Gm = GL,/SL, and Dirichlet’s unit theorem.
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Linear algebraic groups

GL, ~ most general setting

@ G connected linear algebraic group
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Linear algebraic groups

GL, ~ most general setting
@ G connected linear algebraic group
° Gred — G/Gu, G = [Gred’ Gred],
Gtor — Gred/Gss Gs¢ 5 GSs

Suppose that G*¢ verifies arithmetic purity for str. approx. off ooy
(in particular when it is quasi-split).

G verifies arithmetic purity of codimension (2 + dim G*) for str.
approx. with BM obs. off coy.

Strong approx. for punctured Abelian varieties 14/19
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Negative answers
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Negative answers

e Example (Y. Cao & F. Xu 2013):
k = Q or an imaginary quadratic field
- X = G,, x A! satisfies str. approx. with BM obs. off ooy
(Harari 2008, arithmetic duality theorems)
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Negative answers

e Example (Y. Cao & F. Xu 2013):
k = Q or an imaginary quadratic field
- X = G,, x A! satisfies str. approx. with BM obs. off ooy
(Harari 2008, arithmetic duality theorems)
- U = X\ {one rational point} does not satisfy str. approx.
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Negative answers

e Example (Y. Cao & F. Xu 2013):
k = Q or an imaginary quadratic field
- X = G,, x A! satisfies str. approx. with BM obs. off ooy
(Harari 2008, arithmetic duality theorems)
- U = X\ {one rational point} does not satisfy str. approx.
with BM obs. off ooy

e X fails arithmetic purity
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Punctured Abelian varieties

Theorem (L. 2018)

E : elliptic curve, rank(E(k)) > 0

A : Abelian variety, rank(A(k)) =0, dimA # 0

T C E x A a finite set of torsion points

X=(ExAN\T

If pra(T) contains a k-rational point, then X does not satisfy Str.
Approx. with BM obs. off coy.

The converse is also true if III(E x A, k) < oc.
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Punctured Abelian varieties

Theorem (L. 2018)

E : elliptic curve, rank(E(k)) > 0

A : Abelian variety, rank(A(k)) =0, dimA # 0

T C E x A a finite set of torsion points

X=(ExAN\T

If pra(T) contains a k-rational point, then X does not satisfy Str.
Approx. with BM obs. off coy.

The converse is also true if III(E x A, k) < oc.

@ Remark: the case where T = {O} was known in
[Cao-Liang-Xu 2017].
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|dea of proof

The proof use fibration methods with the following lemma.

E : elliptic curve, rank(E(k)) > 0.
T C E finite set of torsion points.

U=E\T.
Then U does not satisfy str. approx. with BM obs. w.r.t Br(E) off

Q.
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U=E\T.
Then U does not satisfy str. approx. with BM obs. w.r.t Br(E) off

Q.

@ This lemma was known to [Harari-Voloch 2010] only in the
very special case: k =Q, E : y? = x3 + 3, rank(E(Q)) = 1

and T = {O}.
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|dea of proof

The proof use fibration methods with the following lemma.

E : elliptic curve, rank(E(k)) > 0.
T C E finite set of torsion points.

U=E\T.
Then U does not satisfy str. approx. with BM obs. w.r.t Br(E) off
00

@ This lemma was known to [Harari-Voloch 2010] only in the
very special case: k = Q, E : y? = x3 + 3, rank(E(Q)) =1
and T = {O}.

e Final remark: As a consequence, E \ O does not satisfy str.
approx. with BM obs.off ooy
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Thank you for your attention |

B AR |
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