Brauer－Manin obstruction ： rational points versus zero－cycles

Yongqi LIANG

梁永祺

Université Paris－Sud 11，Orsay，France

RAGE 2011／05／19
Atlanta，U．S．

Notations

- k : number field
- k_{v}, for $v \in \Omega_{k} . \Omega_{k}^{f}, \Omega_{k}^{\infty}, \Omega_{k}^{\mathbb{R}}, \Omega_{k}^{\mathbb{C}}$
- X : projective variety (separated scheme of finite type, geometrically integral) over k
- $\operatorname{Br}(X):=H_{\text {et }}^{2}\left(X, \mathbb{G}_{m}\right)$ the cohomological Brauer group
- $X_{v}=X \otimes_{k} k_{v}$

Rational points

- $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=$ left kernel of the pairing
- Fact. $\overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}$ (hy class field theory) $\overline{X(k)}$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)
- If $=$, Brauer-Manin obstruction is the only obstruction to weak approximation

Rational points

- $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=$ left kernel of the pairing
- Fact. $\overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}$ (by class field theory) $\overline{X(k)}$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)
- If $=$, Brauer-Manin obstruction is the only obstruction to weak approximation

Rational points

- $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=$ left kernel of the pairing
- Fact. $\overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}$ (by class field theory) $\overline{X(k)}$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)
- If $=$, Brauer-Manin obstruction is the only obstruction to weak approximation

Rational points

- $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=$ left kernel of the pairing
- Fact. $\overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}$ (by class field theory) $\overline{X(k)}$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)
- If $=$, Brauer-Manin obstruction is the only obstruction to weak approximation

Rational points

- $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=$ left kernel of the pairing
- Fact. $\overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}$ (by class field theory) $\overline{X(k)}$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)
- If $=$, Brauer-Manin obstruction is the only obstruction to weak approximation

Zero-cycles

- (Colliot-Thélène) Similarly, Brauer-Manin pairing

$$
\begin{aligned}
& {\left[\Pi_{v \in \Omega} Z_{0}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
& {\left[\Pi_{v \in \Omega} C H_{0}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
& {\left[\Pi_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}}
\end{aligned}
$$

- The modified Chow group:

- complex $\mathrm{CH}_{0}(X) \rightarrow \prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right) \rightarrow \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})$

Zero-cycles

- (Colliot-Thélène) Similarly, Brauer-Manin pairing

$$
\begin{aligned}
& {\left[\Pi_{v \in \Omega} Z_{0}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
& {\left[\Pi_{v \in \Omega} C H_{0}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
& {\left[\Pi_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}}
\end{aligned}
$$

- The modified Chow group:

$$
C H_{0}^{\prime}\left(X_{v}\right)= \begin{cases}C H_{0}\left(X_{v}\right), & v \in \Omega^{f} \\ C H_{0}\left(X_{v}\right) / N_{\mathbb{C} \mid \mathbb{R}} C H_{0}\left(\bar{X}_{v}\right), & v \in \Omega^{\mathbb{R}} \\ 0, & v \in \Omega^{\mathbb{C}}\end{cases}
$$

- complex $\mathrm{CH}_{0}(X) \rightarrow \prod_{v \in \Omega} \mathrm{CH}_{0}^{\prime}\left(X_{v}\right) \rightarrow \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})$

Zero-cycles

- (Colliot-Thélène) Similarly, Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} Z_{0}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
{\left[\prod_{v \in \Omega} C H_{0}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
{\left[\prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}}
\end{gathered}
$$

- The modified Chow group:

$$
C H_{0}^{\prime}\left(X_{v}\right)= \begin{cases}C H_{0}\left(X_{v}\right), & v \in \Omega^{f} \\ C H_{0}\left(X_{v}\right) / N_{\mathbb{C} \mid \mathbb{R}} C H_{0}\left(\bar{X}_{v}\right), & v \in \Omega^{\mathbb{R}} \\ 0, & v \in \Omega^{\mathbb{C}}\end{cases}
$$

- complex $\mathrm{CH}_{0}(X) \rightarrow \prod_{v \in \Omega} \mathrm{CH}_{0}^{\prime}\left(X_{v}\right) \rightarrow \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})$

Zero-cycles

- $M^{\curlywedge}:=\lim _{n} M / n M=M \otimes \widehat{\mathbb{Z}}$ for any abelian group M $A_{0}(X):=\operatorname{ker}\left(\mathrm{CH}_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right)$
- complex (E)

similarly, complex $\left(E_{0}\right)$
$\left[A_{0}(X)\right]^{\wedge} \rightarrow\left\lceil\prod_{v \in \Omega} A_{0}\left(X_{v}\right){ }^{\wedge} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})\right.$
Question: Are they exact?

Remark (Wittenberg)

Exactness of $(E) \Longrightarrow$
Exactness of (E_{0})
$\left(E_{1}\right)$: Existence of $z \in C H_{0}(X)$ of degree 1 supposing the
existence of a family of degree 1 zero-cycles $\left\{z_{v}\right\} \perp \operatorname{Br}(X)$.

Zero-cycles

- $M^{\wedge}:=\lim _{n} M / n M=M \otimes \widehat{\mathbb{Z}}$ for any abelian group M

$$
A_{0}(X):=\operatorname{ker}\left(C H_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right)
$$

- complex (E)

$$
\left[\mathrm{CH}_{0}(X)\right]^{\wedge}\left[\Pi_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right]^{\wedge} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})
$$

similarly, complex (E_{0})

$$
\left[A_{0}(X)\right]^{\wedge}\left[\Pi_{v \in \Omega} A_{0}\left(X_{v}\right)\right]^{\wedge} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})
$$

Question: Are they exact?

Remark (Wittenberg)

Exactness of $(E) \Longrightarrow$
Exactness of (E_{0})
(E_{1}): Existence of $z \in C H_{0}(X)$ of degree 1 supposing the
existence of a family of degree 1 zero-cycles $\left\{z_{v}\right\} \perp \operatorname{Br}(X)$.

Zero-cycles

- $M^{\wedge}:=\lim _{n} M / n M=M \otimes \widehat{\mathbb{Z}}$ for any abelian group M
$A_{0}(X):=\operatorname{ker}\left(\mathrm{CH}_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right)$
- complex (E)

$$
\left[C H_{0}(X)\right]^{\wedge}\left[\prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right]^{\wedge} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})
$$

similarly, complex (E_{0})

$$
\left[A_{0}(X)\right] \leadsto\left[\prod_{v \in \Omega} A_{0}\left(X_{v}\right)\right] \xrightarrow{\wedge} \operatorname{Hom}(B r(X), \mathbb{Q} / \mathbb{Z})
$$

Question: Are they exact?

Remark (Wittenberg)

Exactness of $(E) \Longrightarrow$

- Exactness of $\left(E_{0}\right)$
- $\left(E_{1}\right)$: Existence of $z \in C H_{0}(X)$ of degree 1 supposing the existence of a family of degree 1 zero-cycles $\left\{z_{v}\right\} \perp \operatorname{Br}(X)$.

Examples and a conjecture

- (Cassels-Tate) $\left(E_{0}\right)$ is exact if $X=A$ is an abelian variety (with finiteness of $\amalg(A)$ supposed).
- (Colliot-Thélène) (E) is exact if $X=C$ is a smooth curve (with finiteness of $\amalg(\operatorname{Jac}(C))$ supposed).

Conjecture (Colliot-Thelene/Sansuc, Kato/Salto, Colliot-Thelene)
 The complex $\left(E_{0}\right)$ is exact for all smooth projective varieties.

Examples and a conjecture

- (Cassels-Tate) $\left(E_{0}\right)$ is exact if $X=A$ is an abelian variety (with finiteness of $\amalg(A)$ supposed).
- (Colliot-Thélène) (E) is exact if $X=C$ is a smooth curve (with finiteness of $\amalg(\operatorname{Jac}(C))$ supposed).

Conjecture (Colliot-Thélène/Sansuc, Kato/Saito, Colliot-Thélène)
 The complex $\left(E_{0}\right)$ is exact for all smooth projective varieties.

Examples and a conjecture

- (Cassels-Tate) $\left(E_{0}\right)$ is exact if $X=A$ is an abelian variety (with finiteness of $\amalg(A)$ supposed).
- (Colliot-Thélène) (E) is exact if $X=C$ is a smooth curve (with finiteness of $\amalg(\operatorname{Jac}(C))$ supposed).

Conjecture (Colliot-Thélène/Sansuc, Kato/Saito, Colliot-Thélène)

The complex $\left(E_{0}\right)$ is exact for all smooth projective varieties.

Rationally connectedness

Definition

$X_{/ k}$ is called rationally connected, if for any $P, Q \in X(\mathbb{C})$, there exists a \mathbb{C}-morphism $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X_{\mathbb{C}}$ such that $f(0)=P$ and $f(\infty)=Q$.

- Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus >0 is never rationally connected.
- Example:
- A homogeneous space of a connected linear algebraic group is rationally connected.

Rationally connectedness

Definition

$X_{/ k}$ is called rationally connected,
if for any $P, Q \in X(\mathbb{C})$, there exists a \mathbb{C}-morphism $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X_{\mathbb{C}}$ such that $f(0)=P$ and $f(\infty)=Q$.

- Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus >0 is never rationally connected.
- Example
- A homogeneous space of a connected linear algebraic group is rationally connected

Rationally connectedness

Definition

$X_{/ k}$ is called rationally connected,
if for any $P, Q \in X(\mathbb{C})$, there exists a \mathbb{C}-morphism $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X_{\mathbb{C}}$ such that $f(0)=P$ and $f(\infty)=Q$.

- Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus >0 is never rationally connected.
- Example:
- A homogeneous space of a connected linear algebraic group is rationally connected.

Main result

Theorem (Liang 2011)

Let X be a smooth (projective) rationally connected variety defined over a number field k.

Assume that the Brauer-Manin obstruction is the only obstruction to weak approximation for rational points on $X \otimes_{k} K$, for any finite extension K/k.

Then, the complex (E), hence $\left(E_{0}\right)$, is exact for X.

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (Liang 2010)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, generalized Hilbertian subset)
$\forall d \subset Z, B M$ obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right) k, \forall K / k$ finite. \Longrightarrow (key: Theorem of Kollár-Szabó (X is RC), an argument of Wittenberg) - Exactness of (F) for $X \times \mathbb{P}^{1}$
- Exactness of (E) for X.

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (Liang 2010)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, generalized Hilbertian subset)
- $V \mathbf{A}^{\prime} \in \mathbb{Z}, \mathrm{BM}$ obstruction is the only obs. to "weak approx.' for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{K}, \forall K / k$ finite. \Longrightarrow (key: Theorem of Kollár-Szabó (X is RC), an argument of Wittenberg)

- Exactness of (E) for X

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (Liang 2010)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, generalized Hilbertian subset)
- $\forall d \in \mathbb{Z}$, BM obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{K}, \forall K / k$ finite.
\Longrightarrow (key: Theorem of Kollár-Szabó (X is RC), an argument of Wittenberg)

- Exactness of (E) for X

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (Liang 2010)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, generalized Hilbertian subset)
- $\forall d \in \mathbb{Z}$, BM obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{K}, \forall K / k$ finite.
\Longrightarrow (key: Theorem of Kollár-Szabó (X is RC), an argument of Wittenberg)
- Exactness of (E) for $X \times \mathbb{P}^{1}$.
- Exactness of (E) for X.

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (Liang 2010)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$, generalized Hilbertian subset)
- $\forall d \in \mathbb{Z}$, BM obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{K}, \forall K / k$ finite.
\Longrightarrow (key: Theorem of Kollár-Szabó (X is RC), an argument of Wittenberg)
- Exactness of (E) for $X \times \mathbb{P}^{1}$.
- Exactness of (E) for X.

An application

- Recall : a result of Borovoi (1996).
$G_{/ k}$: connected linear algebraic group.
Y : homogeneous space of G with connected stabilizer (or with abelian stabilizer if G is simply connected).
X : smooth compactification of Y.
Then the Brauer-Manin obstruction is the only obstruction to weak approximation for rational points on X.

> Corollary
> The comnlex $(E),\left(E_{0}\right)$ are exact for smooth compactifications of any homogeneous space of any connected linear algebraic group with connected stabilizer (or with abelian stabilizer if the group is simply connected)

An application

- Recall : a result of Borovoi (1996).
$G_{/ k}$: connected linear algebraic group.
Y : homogeneous space of G with connected stabilizer (or with abelian stabilizer if G is simply connected).
X : smooth compactification of Y.
Then the Brauer-Manin obstruction is the only obstruction to weak approximation for rational points on X.

Corollary

The complex $(E),\left(E_{0}\right)$ are exact for smooth compactifications of any homogeneous space of any connected linear algebraic group with connected stabilizer (or with abelian stabilizer if the group is simply connected).

Thank you for your attention!

Yongqi LIANG
yongqi.liang@math.u-psud.fr
http://www.math.u-psud.fr/~yliang/

