
DESCENT THEORY FOR QUASI-COHERENT SHEAVES

YONG-QI LIANG

Abstract. Faithfully flat descent of quasi-coherent sheaves is discussed in
this paper. The affine case is discussed in subsection 1.2, the general case is
in subsection 5.3. Before the descent theory, the notions of Grothendieck
topology, fibred category and stack are introduced briefly without any
proofs. An almost complete proof of faithfully flat descent is given. Some
applications can be found at the end.
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Here I mainly follow the explained FGA [2], but not the original SGA [1].
For a more elementary language/treatment of this topic one can refer to [3],
where the idea of descent theory is written very clear. Some useful information
can be also found in [5].

1. Commutative Algebra

Let A be a commutative ring with identity. The notation ⊗ means ⊗A if
there will be no confusion.

1.1. Faithfully Flatness.

Definition 1.1. An A-module M(resp. A-algebra B) is called faithfully flat
if for any sequence of A-modules 0 → N ′ → N → N ′′ → 0, it is exact if and
only if 0 → N ′⊗M → N ⊗M → N ′′⊗M → 0(resp.0 → N ′⊗B → N ⊗B →
N ′′ ⊗B → 0) is exact.

Theorem 1.2. For an A-module M(resp. A-algebra B), the following are
equivalent:

(1)M(resp.B) is faithfully flat;
(2)M(resp.B) is flat, and A-module N 6= 0 implies N⊗M 6= 0(resp.N⊗B 6=

0);
(3)M(resp.B) is flat, and for any maximal ideal m of A we have mM 6=

M(resp.mB 6= B);
(4)(only for B) Spec(B) → Spec(A) is flat and surjective.

Proof. see [4]. ¤

Define a A-module sequence for any A-algebra B:

(1.1.1) A
d0→ B

d1→ . . .
dn−1→ B⊗n dn→ . . .

dn(b0⊗. . .⊗bn−1) = 1⊗b0⊗. . .⊗bn−1−b0⊗1⊗. . .⊗bn−1+. . .+(−1)nb0⊗. . .⊗bn−1⊗1

It is a complex. Tensor it with A-module M , we get a A-module complex:

(1.1.2) M
d0→ M ⊗B

d1→ . . .
dn−1→ M ⊗B⊗n dn→ . . .

Theorem 1.3. If B is faithfully flat A algebra, then the complexes 1.1.1 and
1.1.2 above are exact.

Proof. We only need to prove exactness 1.1.2.
First we assume that there is a section g : B → A of f : A → B (i.e.

gf = id). Define an A-module morphism for each n,

sn : M ⊗B⊗n → M ⊗B⊗(n−1)
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m⊗ b0 ⊗ . . .⊗ bn−1 7→ g(b0)m⊗ b1 ⊗ . . .⊗ bn−1,

it makes sense and can be check that sd+ ds = id− 0, hence the identity map
is null chain homotopic, the complex is exact.

In general, apply ⊗AB to the A-module complex 1.1.2, we get an A⊗A B '
B-module complex for the pair (B 1⊗id→ B⊗A B,M ⊗A B) since (M ⊗A B)⊗B

(B ⊗A B)⊗Bn ' M ⊗A B×A(n+1). But now, B
1⊗id→ B ⊗A B has a section

B ⊗A B → B;x ⊗ y 7→ xy, hence the new complex is exact and by faithfully
flatness we obtain the desired result. ¤

1.2. Descent of Modules. Let f : A → B be a ring homomorphism, M an
A-module, then N = B ⊗ M is a B-module, the descent problem is that in
which case a B-module is of this form, here we restrict ourselves to assume f
to be faithfully flat.

For an A-module M , we have a canonical A-module isomorphism ιM :
M ⊗ B → B ⊗ M ;m ⊗ b 7→ b ⊗ m, and a A-module homomorphism αM :
M → B ⊗M ;m 7→ 1⊗m.

Let N be a B-module, then N⊗B⊗B, B⊗N⊗B and B⊗B⊗N are B⊗3-
modules with scalar product (b1⊗ b2⊗ b3)(x1⊗x2⊗x3) = (b1x1⊗ b2x2⊗ b3x3)
(different meanings in three cases), they are not isomorphic in general.

Assume that there is a morphism ψ : N ⊗ B → B ⊗ N of B⊗2-modules.
Then we get three morphisms of B⊗3-modules,

ψ1 = idB ⊗ ψ : B ⊗N ⊗B → B ⊗B ⊗N,

ψ2 = (idB ⊗ ιN ) ◦ (ψ ⊗ idB) ◦ (idN ⊗ ιB) : N ⊗B ⊗B → B ⊗B ⊗N,

ψ3 = ψ ⊗ idB : N ⊗B ⊗B → B ⊗N ⊗B,

in deed, it is just by inserting the identity in the first, second and third position,
respectively.

We define a category ModA→B. Its objects are pairs (N, ψ), where N is a
B-module, ψ : N ⊗B → B ⊗N is an isomorphism of B⊗2-modules such that
ψ2 = ψ1 ◦ ψ3. Its morphism β : (N, ψ) → (N ′, ψ′) is a B-module morphism
β : N → N ′ such that the following diagram commutes.

N ⊗B
ψ

//

β⊗idB

²²

B ⊗N

idB⊗β
²²

N ′ ⊗B
ψ′

// B ⊗N ′

We can define a functor F : ModA → ModA→B, on objects an A-module
M sends to (B⊗M, ψM ) with ψM = idB ⊗ ιM : (B⊗M)⊗B → B⊗ (B⊗M)
an isomorphism of B⊗2-modules. On morphisms, α : M → M ′ sends to
idB ⊗ α : B ⊗ M → B ⊗ M ′ which can be checked to be a morphism in
ModA→B.

Theorem 1.4. If B is a faithfully flat A-algebra, then F : ModA → ModA→B

is an equivalent of categories.
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Proof. First we define a functor G : ModA→B → ModA as follows. The pair
(N, ψ) sends to GN

def
= {n ∈ N |1⊗ n = ψ(n⊗ 1)} which is a A-submodule of

N. A morphism β : (N, ψ) → (N ′, ψ′) sends to β : GN → GN ′ which can be
checked to make sense.

Consider e1, e2 : B → B ⊗B, e1(b) = b⊗ 1 and e2(b) = 1⊗ b. From 1.3, we
get a exact sequence

(1.2.1) 0 → M
αM→ B ⊗M

(e1−e2)⊗idM−→ B ⊗B ⊗M

Notice that

((e1 − e2)⊗ idM )(b⊗m) = b⊗ 1⊗m− 1⊗ b⊗m

= ψM (b⊗m⊗ 1)− 1⊗ b⊗m

for any m ∈ M and b ∈ B, hence we obtain

((e1 − e2)⊗ idM )(x) = ψM (x⊗ 1)− 1⊗ x

for any x ∈ M , so G(B ⊗M, ψM ) = ker((e1 − e2) ⊗ idM ) by definition of G.
From the exact sequence 1.2.1, we obtain that

M 7→ im(αM ) = ker((e1 − e2)⊗ idM ) = G(B ⊗M, ψM ) = GF (M)

defines a natural isomorphism from the functor GF to identity.
Conversely, starts from an object (N, ψ) in ModA→B, M = G(N, ψ) is

an A-submodule of N which itself is a B-module, this induces a B-module
homomorphism θ : B ⊗ M → N ; b ⊗ m 7→ bm. We want to check that θ is
morphism in ModA→B, that is the following diagram commutes.

B ⊗M ⊗B
θ⊗idB

//

ψM=idB⊗ιM
²²

N ⊗B

ψ
²²

B ⊗B ⊗M
idB⊗θ

// B ⊗N

In fact,

ψ(θ ⊗ idB)(b1 ⊗m⊗ b2) = ψ(b1m⊗ b2)
= (b1 ⊗ b2)ψ(m⊗ 1)
= (b1 ⊗ b2)(1⊗m) (since m ∈ M)
= b1 ⊗ b2m

= (idM ⊗ θ)(b1 ⊗ b2 ⊗m)
= (idB ⊗ θ)(idB ⊗ ιM )(b1 ⊗m⊗ b2)

Hence θ defines a natural transformation of functors FG and id.
We have the following diagram,

0 // M ⊗B
i⊗idB

//

θ◦ιM
²²

N ⊗B
(α−β)⊗idB

//

ψ

²²

B ⊗N ⊗B

ψ1

²²

0 // N
αM

// B ⊗N
(e1−e2)⊗idN

// B ⊗B ⊗N
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The first row is exact since B is flat, the second row is exact since B is
faithfully flat and theorem1.3.

This diagram commutes. For the first square, αMθιM (m ⊗ b) = 1 ⊗ bm
by definition, and ψ(i ⊗ idB)(m ⊗ b) = 1 ⊗ bm follows from the fact that
m ∈ M, ψ(m ⊗ 1) = 1 ⊗m. For the second square, it is immediate to check
that ψ1 ◦ (α⊗ idB) = (e2 ⊗ idN ) ◦ ψ ,and on the other hand,

ψ1(β ⊗ idB)(n⊗ b) = ψ1(ψ(n⊗ 1)⊗ b)
= ψ1ψ3(n⊗ 1⊗ b)
= ψ2(n⊗ 1⊗ b)
= (idB ⊗ ιN )(ψ ⊗ idB)(idN ⊗ ιB)(n⊗ 1⊗ b)
= (idB ⊗ ιN )(ψ ⊗ idB)(n⊗ b⊗ 1)
= (idB ⊗ ιN )(ψ(n⊗ b)⊗ 1)
= (e1 ⊗ idN )(ψ(n⊗ b)),

where the last equality can be checked as follows: By linearity, we can assume
that ψ(n⊗ b) ∈ B ⊗N is of the form a⊗m with a ∈ B and m ∈ N,

(idB ⊗ ιN )(a⊗m⊗ 1) = a⊗ 1⊗m = (e1 ⊗ idN )(a⊗m).

Notice that ψ is an isomorphism and ψ1 = idB ⊗ ψ is also an isomorphism
since B is flat, hence θ ◦ ιM then θ is an isomorphism. ¤

2. Algebraic Geometry

Definition 2.1. A morphism of schemes is called faithfully flat if it is flat
(i.e. the induced morphism on the stalks is flat morphism of algebras for every
point) and surjective.

Proposition 2.2. Let f : X → Y be a surjective morphism of schemes. Then
the following conditions are equivalent,

(1)Every quasi-compact open subset of Y is the image of a quasi-compact
open subset of X;

(2)There exists a covering Vi of Y by open affine subschemes, such that each
Vi is the image of a quasi-compact open subset of X;

(3)Given a point x ∈ X, there exists an open neighborhood U of x in X,
such that the image of U is open in Y , and the restriction U → f(U) is
quasi-compact;

(4)Given a point x ∈ X, there exists a quasi-compact open neighborhood U
of x in X, such that the image of U is open and affine of Y .

Proof. see [2]. ¤
Definition 2.3. An fpqc morphism of schemes is a faithfully flat morphism
that satisfies the equivalent conditions of Proposition 2.2.

The word ”fpqc” stands for ”fidèlement plat et quasi-compact”.

Remark 2.4. A quasi-compact faithfully flat morphism is always fpqc.
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3. Topologies and Sheaves

In this section, we assume that any category under discussing has a final
object and finite fibre product exists.

3.1. Grothendieck Topologies.

Definition 3.1. Let C be a category. A Grothendieck topology(or simply
topology) on C is for each object U of C a collection of sets of morphisms
{Ui → U} called a coverings of U such that

(1)if V → U is an isomorphism, then {V → U} is a covering of U ;
(2)if {Ui → U} is a covering of U , then for any morphism V → U , {Ui ×U

V → V } is covering of V ;
(3)if {Ui → U} is a covering and for each i {Vij → Ui} is a covering, then

{Vij → Ui → U} is a covering of U .
A category with a Grothendieck topology is called a site.

Example 3.2. (the global Zariski topology)
Let C be the category of schemes. As definition {Ui → U} is a covering of

U if Ui → U is open immersion for every i and {Ui → U} is surjective (i.e.
the union of images is U).

Example 3.3. (Zariski topology on a scheme) Let X be a scheme, C be the
full subcategory of the category X-schemes containing only open immersions
of X. A covering {Ui → U ∈ HomX(Ui, U)} of U → X ∈ C consists of
open immersions of U , and this family of morphisms is surjective. This site is
denoted by Xzar.

Example 3.4. (the global small étale topology)

Example 3.5. (small étale topology on a scheme) Let X be a scheme, C be the
full subcategory of the category X-scheme containing only locally of finite pre-
sentation morphisms U → X. A set of morphisms {Ui → U ∈ HomX(Ui, U)}
is a covering of U → X ∈ C if it is surjective and the induced morphism∐

Ui → U is a locally of finite presentation étale morphism. This site on X is
denoted by Xt.

Example 3.6. (the fpqc topology on a scheme) Let X be a scheme, C be the
category X-scheme containing morphisms U → X. A set of morphisms {Ui →
U ∈ HomX(Ui, U)} is a covering of U → X ∈ C if it is surjective and the
induced morphism

∐
Ui → U is a fpqc morphism (see Definition 2.3).

Remark 3.7.
(1)The fpqc topology on X is finer than the étale topology, and the étale

topology is finer than the Zariski topology.
(2)If we define fpqc topology by using the word ”faithfully flat quasi-compact”

instead of ”fpqc”, then the topology cannot be compared with the Zariski topol-
ogy.
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3.2. Canonical Topology of a Category.

Definition 3.8. A family of morphisms {Ui → U} in C is called epimorphism
if Hom(U,Z) → ∏

i Hom(Ui, Z) is injective for any object Z ∈ C.
It is calledeffective epimorphism if

0 → Hom(U,Z) →
∏

i

Hom(Ui, Z) ⇒
∏

i,j

Hom(Ui ×U Uj , Z)

is exact for any object Z ∈ C.
It is called universal effective epimorphism if {Ui ×U V → V } is effective

epimorphism for any V → U.

Define a topology on a given category C as follows. For any object U of C,
{Ui → U} is a covering of U if it is universal effective epimorphism. It’s easy
to check that this is a topology on C, called canonical topology on C.

3.3. Sheaves on Topologies.

Definition 3.9. Let C be a site, a functor F : Co → set is called a presheaf
on the site C.

It is called a sheaf if the following sequence is exact for any object U in C
and any covering {Ui → U} of U :

0 → FU →
∏

i

FUi

pr∗1 ,pr∗2
⇒

∏

i,j

F (Ui ×U Uj)

If the sequence is only exact at the first position, then the presheaf is called
separated.

Remark 3.10. It may happen that for different site C1 and C2 with the same
underlining category, the categories sheaf on C1 and sheaf on C2 may be the
same (see the next subsections).

Not all representable presheaves are sheaves. If we put the canonical topol-
ogy on a category C, then all representable presheaves on C are sheaves. It
is the finest topology that we can put on a category such that this property
holds.

On Xzar, all representable presheaves are sheaves, Zariski topology is weaker
than the canonical topology. In fact, this exactly means that we can glue
morphisms together in zariski topology. But in other topologies, it is not
trivial at all.

Theorem 3.11 (Grothendieck). A representable presheaf on X-scheme is a
sheaf in the fpqc topology. Consequently, it is also a sheaf on étale topology.

Proof. see [2], procedure is similar to the proof of descent theory of quasi-
coherent sheaves, using the following reduction lemma 3.12. ¤
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Lemma 3.12 (Reduction Lemma). Let S be a scheme, F : S − schemeo →
set a presheaf. Suppose that F satisfies the following conditions, then F is a
sheaf in the fpqc topology.

(1)F is a sheaf in the global Zariski topology.
(2)Whenever V → U is a faithfully flat morphism of S-schemes which are

both affine, the following sequence is exact.

0 → FU → FV ⇒ F (V ×U V )

Proof. The proof is similar to the stack version version reduction lemma 5.14,
but much more easy. For details see [2]. ¤

3.4. Sieves.

Definition 3.13. Let U be an object of a category C. A sieve on U is a
subfunctor of hU = Hom(·, U) : Co → set.

Given any set of morphisms U = {Ui → U} (not necessary a covering of
U), we can define a subfunctor hU ⊆ hU , by taking hU (T ) to be the set of
morphisms T → U that factors through some Ui → U in U .

Let U = {Ui → U} be a covering of U , F : Co → set be a functor. We
define FU to be the subset of

∏
i FUi containing elements whose images in∏

i,j F (Ui ×U Uj) are equal. Then the restriction maps induce a function
FU → FU , then F is a sheaf (resp. separated) if and only if this map is
bijective(resp. injective).

Definition 3.14. Let T be a topology on a category C. A sieve S ⊆ hU on
an object U of C is said to belong to T if there exists a covering U of U such
that hU ⊆ S.

Definition 3.15. Let C be a category, {Ui → U}i∈I a set of morphisms. A
refinement {Va → U}a∈A is a set of morphisms such that for each index a ∈ A
there is some index i ∈ I such that Va → U factors through Ui → U.

Proposition 3.16. Given two sets U = {Ui → U} and V = {Va → U} in C,
then V is a refinement if and only if hV ⊆ hU .

Proof. Check by definition. ¤
Definition 3.17. Let C be a category, T and T ′ two topologies on C. We say
that T is subordinate to T ′, and denoted T ≺ T ′, if every covering in T has a
refinement that is a covering in T ′.

If T and T ′ are subordinate to each other, then we say that they are equiv-
alent, denoted T ≡ T ′

Proposition 3.18. Let T and T ′ be topologies on C. Then T ≺ T ′ if and
only if every sieve belonging to T also belongs to T ′.

In particular, two topologies are equivalent if and only if they have the same
sieves.
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Proof. Check directly by definition. ¤
Proposition 3.19. Let T and T ′ be topologies on C. If T ≺ T ′, then every
sheaf in T ′ is also a sheaf in T .

In particular, two equivalent topologies have the same sheaves.

Proof. see [2]. ¤

This means sheaf theory does not depend on the topology, but depends on
which sieves are belonging to the topology.

4. Categorical Language

4.1. Fibred Categories. Fix a category C, we do not need any topology in
this section. F is a category with a functor pF : F → C.. We draw the following
diagram to mean that for object pFξ = U and for morphism pFφ = f .

ξ
φ

//

_

²²

η
_

²²

U
f

// V

Definition 4.1. Let F be a category over C. An morphism φ : ξ → η of F is
cartesian if for any morphism ψ : ζ → η in F and any morphism h : pFζ → pFξ
in C with pFφ ◦ h = pFψ, there exists a unique morphism θ : ζ → ξ with
pFθ = h and φ ◦ θ = ψ, as in the commutative diagram

ζ
_

²²

ψ

ÃÃ
θ

""
E

E
E

E
E

ξ
φ

//

_

²²

η
_

²²

pFζ

ÃÃ
h

""
EE

EE
EE

EE

pFξ // pFη

If ξ → η is a cartesian morphism of F mapping to an morphism U → V
of C, we also say that ξ is a pullback of η to U . It is unique up to a unique
isomorphism.

Definition 4.2. A fibred category over C is a category F over C, such that
given a morphism f : U → V in C and an object η of F mapping to V , there
is a cartesian morphism φ : ξ → η with pFφ = f .

Definition 4.3. If F and G are two fibred categories over C, then a morphism
of fibred categories F : F → G is a functor such that:

(1)F is base-preserving, that is, pG ◦ F = pF ;
(2)F sends cartesian morphisms to cartesian morphisms.
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Definition 4.4. Let F be a fibred categories over C. Given an object U of
C, the fibre F(U) of F over U is the subcategory of F whose objects are the
objects ξ of F that are mapping to U , and whose morphisms are morphisms
in F that are mapping to idU .

If F : F → G is a morphism of fibred categories over C, and U is an object
of C, the functor F sends F(U) to G(U), so we have a restriction functor
FU : F(U) → G(U).

Definition 4.5. A cleavage of a fibred category F → C consists of a class K
of cartesian morphisms in F such that for each morphism f : U → V in C
and each object η in F(V ) there exists a unique morphism in K with target
η mapping to f in C.

A cleavage is called a splitting if it contains all the identities, and it is closed
under composition. A fibred category endowed with a splitting is called split

By the axiom of choice, every fibred category F → C has a cleavage. In
fact, it is unique up to a unique isomorphism. But it is not necessary that the
fibred category has a splitting.

Proposition 4.6. Every fibred category is equivalent to a canonically defined
split fibred category.

Proof. See [2]. ¤

Suppose that V → C is a fibred category with a chosen cleavage, S an object
of C, C/S the subcategory of S-objects in C. Let ξ and η be two objects in
F(U). Given u : U → S in C/S, u∗ξ and u∗η are pullbacks in the chosen
cleavage of ξ and η. Define HomS(ξ, η)(U) to be the set HomF(U)(u∗ξ, u∗η).
If f : U1 → U2 is a morphism in C/S, denote ξi = u∗i ξ and ηi = u∗i η, they are
objects in F(Ui). Then there is a unique morphism αf (resp. βf ), which is
again cartesian, making the following diagram commute.

ξ1

αf
//______

ÁÁ
==

==
==

==
ξ2

¡¡¢¢
¢¢

¢¢
¢¢

ξ
10



. Therefore from the universal property of cartesianess, there exists a unique
morphism f∗φ for any φ ∈ HomF(U2)(ξ2, η2) satisfying the following diagram.

ξ1
f∗φ

//_______

αf

~~}}
}}

}}
}}

²²

η1

²²

βf

~~}}
}}

}}
}}

ξ2

²²

φ
// η2

²²

U1

f

~~}}
}}

}}
}}

U1

f

~~}}
}}

}}
}}

U2 U2

, hence we have defined a pullback function

f∗ : HomF(U2)(ξ2, η2) → HomF(U1)(ξ1, η1)

It can be check that this gives a functor HomS(ξ, η) : (C/S)o → set since
the pullback in a chosen cleavage is unique, sending U to HomF(U)(u∗ξ, u∗η2)
and f to f∗. This functor does not depend on the choice of the cleavage in the
sense that different cleavages give functors which are canonically isomorphic.

4.2. Pseudo-functor.

Definition 4.7. A pseudo-functor Φ on C consists of the following data.
(1)For each object U of C a category ΦU ;
(2)For each morphism f : U → V a functor f∗ : ΦV → ΦU ;
(3)For each object U of C an isomorphism εU : id∗U ' idΦU of functors

ΦU → ΦU ;

(4)For each pair of morphisms U
f→ V

g→ W an isomorphism

αf,g : f∗g∗ ' (gf)∗ : ΦW → ΦU

of functors ΦW → ΦU ;
These data are required to satisfy the following conditions:
(a)If f : U → V is an morphism in C and η is an object of ΦV , we have

αidU ,f (η) = εU (f∗η) : id∗Uf∗η → f∗η

and
αf,idV

(η) = f∗εV (η) : f∗id∗V η → f∗η;

(b)Whenever we have morphisms U
f→ V

g→ W
h→ T and an object θ of

F(T ), the diagram following commutes.

f∗g∗h∗θ
αf,g(h∗θ)

//

f∗αg,h(θ)

²²

(gf)∗h∗θ

αgh,f (θ)

²²

f∗(hg)∗θ
αf,hg(θ)

// (hgf)∗θ
11



Proposition 4.8. A fibred category over C with a cleavage defines a pseudo-
functor on C.
Proof. As seen in definition 4.4, from a fibred category F → C we nearly get
a functor U 7→ F(U) the fibred over any object U of C. Once we choose a
cleavage, we will get the α′s from the uniqueness of cartesian morphism with
respect to this cleavage, then every condition can be checked. For details, see
[2]. ¤
Proposition 4.9. From a pseudo-functor on C, a fibred category over C can
be defined. Moreover, these two procedures are inverse to each other(up to an
isomorphism of fibred categories).

Proof. It is easy to construct a fibred category naturally, but one needs to
check everything which is confusing and boring. For details, see [2]. ¤

Therefore, to study a pseudo-functor is equivalent to study a fibred category
with a cleavage.

4.3. Examples. In fact, only one example will be given here: the fibred cat-
egory of quasi-coherent sheaves.

Let C = X − scheme, for U → X, we define QCoh(U) to be the category
of quasi-coherent sheaves over U . For any X-morphism f : U → V , the
pull back of any quasi-coherent sheaf is quasi-coherent, so we get a functor
f∗ : QCoh(V ) → QCoh(U). However, in general for U

f→ V
g→ W , (gf)∗ 6=

f∗g∗, so U 7→ QCoh(U) is not a functor. But (gf)∗ and f∗g∗ are canonically
isomorphic since (gf)∗ = f∗g∗ and f∗ is left adjoin to f∗, Yoneda lemma
induces the canonical isomorphism between functors (gf)∗ and f∗g∗. One can
also check that the isomorphisms above satisfy the conditions in Definition 4.7,
so we get a pseudo-functor, hence a fibred category QCoh/X → X − scheme

by Proposition 4.9. For details, see [2].

5. Descent Theory for Quasi-coherent Sheaves

5.1. Descent Data. Let C be a site, F a fibred category over C, we fix a
cleavage. Given a covering U = {σi : Ui → U}, set Uij = Ui ×U Uj and Uijk =
Ui×U Uj×U Uk (in fact they depend on the “restriction”map), sometimes they
are denoted simply by Uα, where the index α stands for i, ij or ijk etc.

Definition 5.1. Let U = {σi : Ui → U} be a covering in C. An object with
descent data ({ξi}, {φij}) on U , is a colletion of objects ξi in F(Ui), together
with isomorphisms φij : pr∗2ξj ' pr∗1ξi in F(Uij), such that the following
cocycle condition is satisfied.

For any triple of indices i, j and k, we have the equality

pr∗13φik = pr∗12φij ◦ pr∗23φjk : pr∗3ξk → pr∗1ξi

The isomorphisms φij are called transition isomorphisms of the object with
descent data.

12



An morphism between objects with descent data

{αi} : ({ξi}, {φij}) → ({ηi}, {ψij})

is a collection of morphisms αi : ξi → ηi in F(Ui) such that the following
diagram commutes for each pair of indices i, j.

pr∗2ξj
pr∗2αj

//

φij

²²

pr∗2ηj

ψij

²²

pr∗1ξi
pr∗1αi

// pr∗1ηi

It can be check that we have defined a category with objects with descent
data as objects, and morphism as above, this category is denoted by F(U) =
F({Ui → U})

Remark 5.2. This category does not depend on the choice of fibred product
Uij and Uijk, from different choices we get isomorphic categories.

Until now, we didn’t use the fixed cleavage.

For each object ξ of F(U) we can construct a object with descent data on
the covering U = {σi : Ui → U}. First set ξi = σ∗i ξ. pr∗1ξi is the unique pull
back of ξi along pr1 : Uij → Ui in the fixed cleavage, pr∗2ξj respectively, then
there is a unique isomorphism φij : pr∗2ξj → pr∗i ξi. It is easy to check that this
gives a object with descent data on U . Similarly for morphisms in F(U). We
have defined a functor F(U) → F(Ui → U).

Remark 5.3. This functor does not depend on the choice of the cleavage on C
up to a canonical isomorphism of functors. There are other ways to define the
category F(U) which do not need cleavage at all.

For better understanding of this most important concept, I would like to
give another definition of descent data as follows.

First of all, we define an object with descent data to be a triple of sets

({ξi}i∈I{ξij}i,j∈I{ξijk}i,j,k∈I),

with a commutative diagram–the first one below, where each ξα is an object
of F(Uα), and in the diagram each arrow is cartesian and when applying the
functor pF : F → C one get part of the second commutative diagram with all
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faces cartesian(notice that it is not necessary always commutes).

ξijk //

~~}}
}}

}}
}}

²²

ξjk

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

²²

ξij //

²²

ξj

ξik
//

}}||
||

||
||

ξk

ξi

Â pF
//

Uijk //

}}{{
{{

{{
{{

²²

Ujk

~~}}
}}

}}
}}

²²

Uij //

²²

Uj

²²

Uik
//

||zz
zz

zz
zz

Uk

}}{{
{{

{{
{{

Ui
// U

These form the objects of a category Fdesc({Ui → U}).
A morphism

{φi}i∈I : ({ξi}i∈I{ξij}i,j∈I{ξijk}i,j,k∈I) → ({ηi}iηI{ηij}i,j∈I{ηijk}i,j,k∈I)

consists of set of morphisms φi : ξi → ηi in F(Ui), such that for every pair of
indices i and j we have pr∗1φi = pr∗2φj : ξij → ηij .

Similarly, we can define a category whose object is triples ({ξi}i∈I{ξij}i,j∈I{ξijk}i,j,k∈I)
with commutative diagram in F :

ξijk //

~~}}
}}

}}
}}

²²

ξjk

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

²²

ξij //

²²

ξj

²²

ξik
//

}}||
||

||
||

ξk

~~~~
~~

~~
~~

ξi
// ξ

in which all arrows are cartesian and when applying pF we get the commutative
diagram of Uα in C as above. An morphism of Fcomp({Ui → U}) is just an
morphism φ : ξ → η in F(U).

We claim without proof that Fcomp({Ui → U}) is equivalent to F(U)
by forgetting everything except ξ. And Fdesc({Ui → U}) is equivalent to
F({Ui → U}). Moreover the functor Fcomp({Ui → U}) → Fdesc({Ui → U})
by forgetting ξ corresponds to the functor F(U) → F({Ui → U}).

This is similar to the several equivalent but different definitions of vector
bundles in geometry, in fact essentially they are one thing since a vector bundle
can be view as a sheaf which is a particular case of stack.

Remark 5.4. Since sheaf theory is determined by sieves on a topology, in the
language of sieves the results can be stated more neatly, but I’m not going to
give the details at this moment, for the some discussion one can refer to [2].
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5.2. Stacks.

Definition 5.5. Let U be a fibred category over a site C.
(1)F is a prestack if for each covering U = {Ui → U} of U , the functor

F(U) → F(U) is fully faithful.
(2)F is a stack if for each covering U = {Ui → U} of U , the functor

F(U) → F(U) is an equivalence.

Definition 5.6. An object with descent data in F({Ui → U}) is effective if
it is isomorphic to the image of an object of F(U).

Concretely, for fibred category F over a site C to be a prestack means the
following. For any object U in C and any covering {Ui → U}, two objects ξ and
η in F(U), ξi, ξij , ηi, ηij are some pullbacks to Ui and Uij . Suppose that there
are morphisms αi : ξi → ηi in F(Ui), such that pr∗1αi = pr∗2αj : ξij → ηij for
all i, j. Then there is a unique morphism α : ξ → η in F(U), whose pullback
to ξi → ηi is αi for all i. By translating the language, we obtain:

Proposition 5.7. Let F be a fibred category over a site C. Then F is a
prestack if and only if for any object S of C and any two objects ξ and η in
F(S), the functor (see subsection 4.1) HomS(ξ, η) : (C/S)o → set is a sheaf
with respect to the induced topology of C/S from C.
Proof. See [2]. ¤
Remark 5.8. For understanding, the notion of stack is similar to the notion of
sheaf. If we can glue the sections (one kind of local data) together then what
we get is a sheaf, here if we can glue the descent data (another kind of local
data) together then what we get is a stack.

Example 5.9. In the classical Zariski topology, to give a sheaf on X, we can
give it on the covering of X, but we require that out local data on the covering
are compatible (the cocycle condition), then the standard argument shows that
there exists a unique sheaf on X such that after restricting to the covering we
get the local data given at the beginning. This means that the fibred category
sheaf/Xzar → Xzar is a stack.

Proposition 5.10. Let C be a site, F a presheaf of sets, F (U) is a set which
can be viewed as a category and F is a pseudo-functor, so we get a fibred
category F → C. Then F is a prestack (resp. stack) if and only if it is a
separated presheaf (resp. sheaf).

Proof. Omitted, see [2]. ¤
Proposition 5.11. If two fibred categories over a site are equivalent, then the
fact that one of them is a stack (resp. prestack) implies the other.

Proof. See [2]. ¤
Lemma 5.12. If F is a prestack on a site, U and V two covering of and object
U of C, with V a refinement of U , and F(U) → F(V) is an equivalence, then
F(U) → F(U) is also an equivalence.
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Proof. See [2]. ¤

5.3. Descent Theory.

Theorem 5.13. Let V → U be a flat surjective morphism of affine schemes,
then QCoh(U) → QCoh(V → U) is an equivalence of categories.

Proof. We need only to translate the Theorem 1.4. Let U = Spec(A) and
V = Spec(B) with V → U induced by A → B which is faithfully flat by
Theorem 1.2. We have already known that the categories QCoh(U) (resp.
Qcoh(V )) and ModA (resp. ModB) are equivalent, with respect to M 7→ M̃.
To describe an object (i.e. object with descent data) in QCoh(V → U), first
there is a quasi-coherent sheaf M over V , M = M̃ with a B-module M .
In our covering {σ : V → U} there is only one map, pull back along pr∗1
and pr∗2 from V to V ×U V , we get quasi-coherent sheaves pr∗1M = M̃ ⊗A B

and pr∗2M = ˜B ⊗A M on V ×U V , an isomorphism φ : pr∗2M → pr∗1M as
sheaves on V ×U V corresponds to an isomorphism ψ : B ⊗A M → M ⊗A B
as B ⊗B-modules (unfortunately, I’m so careless that in this equivalence the
foot-indices of one of the definitions QCoh(V → U) and ModA→B should be
reversed, the ψ here should be ψ−1 in the definition of ModA→B, even [2] made
this mistake!). The cocycle condition for φ holds if and only if ψ1ψ3 = ψ2.
And also the morphisms of objects with descent data on V → U correspond to
morphisms in ModA→B. So we get the equivalence ModA→B ' QCoh(V →
U). And the functors QCoh(U) → QCoh(V → U) and ModA → ModA→B

are corresponding. Therefore we have translated the Theorem 1.4 to this
theorem. ¤

Lemma 5.14 (Reduction Lemma). Let S be a scheme, F be a fibred cate-
gory over the category S − scheme. Suppose that the following conditions are
satisfied, then F is a stack with respect to the fpqc topology.

(1)F is a stack with respect to the Zariski topology;
(2)Whenever V → U is a flat surjective morphism of S-schemes which are

both affine, the functor F(U) → F(V → U) is an equivalence of categories.

Remark 5.15. This type of lemma appears frequently in any theory considering
Grothendieck topology, it reduces the global fact to commutative algebra and
basic algebraic geometry in Zariski topology.

Theorem 5.16 (descent of quasi-coherent sheaves). Let S be a scheme. The
fibred category QCoh/S over S − scheme is a stack with respect to the fpqc
topology.

Proof. It is a standard fact that QCoh is a stack in Zariski topology, see
example 5.9. For the affine case, it is Theorem 5.13. This is enough by the
reduction Lemma 5.14. ¤

Proof of reduction lemma. This is just a sketch, for a complete proof see [2].
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According to Proposition 4.6 and 5.11, we can assume that F is split fibred
category.

The proof divides to several steps.

Step 1, F is a prestack. Given an S-scheme T → S and two objects ξ
and η of F(T ), from the definition of descent data, we see immediately that
the functor HomT (ξ, η) : T − schemeo → set satisfies the two conditions in
Lemma 3.12, so it is a sheaf in the fpqc topology, then by 5.7 F is a prestack
in the fpqc topology.

Step 2, reduction to the case of a single morphism.

First notice that if U is a disjoint union of open subschemes Ui, then the
functor F(U) → ∏

iF(Ui) given by restrictions is an equivalence of categories.

Given any covering {Ui → U} in fpqc topology, set V =
∐

i Ui with induced
morphism V → U , this is again a covering in fpqc topology by definiton. We
claim that the functor F(U) → F({Ui → U}) is an equivalence if and only
if F(U) → F(V → U) is. In fact, we will show that there is an equivalence
F(V → U) → F({Ui → U}) commuting with the two functors above.

It is easy to see that V ×U V ' ∐
i, j(Ui ×U Uj). Hence we get the equiva-

lences F(V ) → ∏F(Ui) and F(V ×U V ) → ∏
i,j F(Ui×U Uj). Let (η, φ) be an

object in F(V → U), this means η is an object of F(V ) and φ : pr∗2η → pr∗1η
an isomorphism in F(V ×U V ) with cocycle condition. Let ηi be the restriction
of η to Ui and φij be the pull back of φ to Ui ×U Uj , the cocycle condition
of φ give those of φij . Check that (η, φ) 7→ ({ηi}, {φij}) is an equivalence
F(V → U) → F({Ui → U}).

Step 3, the case of a quasi-compact morphism with affine target

Let V → U be a faithfully flat quasi-compact morphism with U affine, it
is a fpqc morphism by Remark 2.4. Then V is quasi-compact, we can take a
Zariski covering of V consisting of finite many open affines Vi. Let V ′ =

∐
Vi

with induced V ′ → U which is again a faithfully flat quasi-compact hence fpqc
morphism. And the covering V ′ → U is a refinement of V → U in the fpqc
topology, and F is already a prestack by step 1. But now V ′ and U are both
affine, by hypothesis (2) F(U) → F(V ′ → U) is an equivalence, hence so is
F(U) → F(V → U) by Lemma 5.12.

Step 4, the case of a morphism with affine target.

Now let V → U be any fpqc morphism morphism with U affine. Then by
Proposition 2.2(1), there is a quasi-compact open subscheme W of V maps
onto U , for each x ∈ V take an affine open neighborhood Vx. Then W ∪ Vx

is a Zariski open covering of V , each of which is quasi-compact, and each
W ∪ Vx → U is fpqc by Proposition 2.2(2). What we get is a Zariski open
covering {Vi} of V by quasi-compact open subschemes, with Vi → U a fpqc
covering for all i.
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Now choose an i, it follows from the previous step that F(U) → F(Vi → U)
is an equivalence. Consider the following diagram of functors,

F(U) //

&&LLLLLLLLLL
F(V → U)

wwooooooooooo

F(Vi → U)

notice that the functors are defined through the split cleavage, in the def-
inition for any object η in F(U), pulling it back two times to F(V → U)
then to F(Vi → U) is not necessary the same with pulling it back directly to
F(Vi → U) (it makes sense if we fix a cleavage), but here it really equals since
split cleavage is closed under composition and the pull back chosen in a fixed
cleavage is unique, so the diagram commutes. Now the left edge is an equiva-
lence and the top edge is fully faithful by step 1, in this step we need to show
that the top edge is also essentially surjective, it follows from the diagram that
we only need to show that the right edge F(V → U) → F(Vi → U) is fully
faithful.

F(U) → F(Vi → U) is an equivalence hence is full, this implies F(V →
U) → F(Vi → U) is full, so it is enough to show that it is faithful. Consider the
following commutative (the same reason as before) diagram involving another
index j,

F(U) //

%%LLLLLLLLLL
F(Vi ∪ Vj → U)

vvmmmmmmmmmmmm

F(Vi → U)

step 3 shows that two edges are equivalences, hence so is the third. We get
the equivalence F(Vi ∪ Vj → U) → F(Vi → U), similarly F(Vi ∪ Vj → U) →
F(Vj → U), hence an equivalence F(Vj → U) → F(Vi → U) for any j. If two
morphisms in F(V → U) map to the same morphism in F(Vi → U), then they
map to the same in F(Vj → U) for any j, so they are the same in F(V → U)
since F is separated by step 1.

Step 5, the general case

Let f : V → U be a fpqc morphism, by Proposition 2.2, U can be written
as a union of affine opens Ui such that Vi = f−1(Ui) → Ui is a fpqc morphism
which is denoted by fi. We have seen that F(U) → F(V → U) is fully faithful,
need to show that it is essentially surjective. In the following, the pull back
along fpqc morphism will be called pull back, but along Zariski open subset
will be called restriction and denoted by “|”.
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For each open subscheme U ′ of U , we have a fully faithful functor ΦU ′ :
F(U ′) → F(f−1U ′ → U ′) such that the following diagrams of functors com-
mute for any U ′′ ⊆ U ′ (this use the split cleavage).

(5.3.1) F(U ′) //

ΦU′
²²

F(U ′′)

ΦU′′
²²

F(f−1U ′ → U ′) // F(f−1U ′′ → U ′′)

where the rows is just the natural restrictions.

Now take a object with descent data (η, φ) in F(V → U), want to find a
object ξ in F(U) such that ΦU (ξ) ' (η, φ).

Let (ηi, φi) be restriction of (η, φ) to Vi. Since F(Ui) → F(Vi → Ui) is
an equivalence by step 4, we get an object ξi in F(Ui) and an isomorphism
αi : ΦUiξi ' (ηi, φi) in F(Vi → Ui). We want to glue it in Zariski covering
{Ui → U} to get ξ, we need some descent data φij : ξj |Uij ' ξj |Uij , which will
be construct as follows with the cocycle conditions.

It is easy to see that Vij = Vi ∩ Vj = f−1(Uij), then αi : ΦUiξi ' (ηi, φi)

restrict to Vij we get an isomorphism ΦUij (ξi|Uij ) = (ΦUiξi)|Vij

αi|Vij−→ (η, φ)|Vij ,
where the equality comes from the diagram 5.3.1 which tells us that Φ com-
mutes with restriction, it is still isomorphic since descent data are functorial
in everything that you can thought. Therefore, we obtain the isomorphism
α−1

i αj : ΦUij (ξj |Uij ) ' ΦUij (ξi|Uij ), but ΦUij is an equivalence, so there exists
a unique isomorphism φij : ξj |Uij ' ξi|Uij such that ΦUijφij = α−1

i αj . By ap-
plying ΦUijk

to these isomorphisms we get the cocycle conditions φik = φijφjk

since α−1
i αj ’s do and ΦUijk

is at least fully faithful. By hypothesis (1), we glue
together the ξi’s to get ξ in F(U) with ti : ξ|Ui ' ξi where ti|Uij = φij ◦ tj |Uij .
At last we need to check that under the functor F(U) → F(U → V ) it is sent
to something isomorphic to (η, φ).

Since ti : ξ|Ui ' ξi, ΦUi(ξ|Ui)
ΦUi

(ti)' ΦUiξi
αi' (ηi, φi) = (η, φ)|Vi . On the

other hand, the left hand side equals to ΦU (ξ)|Vi since the diagram 5.3.1
means Φ commutes with restriction. Hence we obtain an isomorphism (for
each i) αi ◦ ΦUi(ti) : ΦU (ξ)|Vi ' (η, φ)|Vi . Combine ΦUijφij = α−1

i αj , ti|Uij =
φij ◦ tj |Uij and the fact that restriction commutes with Φ, we can see when
restrict further to Vij , the isomorphisms αi ◦ ΦUi(ti) coincide. With respect
to the Zariski covering {Vi → V } of V , we glue the isomorphism together
to get an isomorphism f∗ξ ' η whose pullback is αi : f∗ξi ' ηi (see the
discuss after Definition 5.5), this gives an isomorphism of objects with descent
data Φ(U) ' (η, φ) (we need some more commutative diagrams which can be
checked by the uniqueness of Zariski gluing, but boring).

This completes the proof of reduction lemma. ¤
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6. Application

I just want to make the theory look like richer. I’m not going to make these
things into precise, only some facts as application are given here. One can
refer to [6] for some information, which do not contain all details either.

For a finite Galois extension of fields L/K, Spec(L) → Spec(K) is faithful
flat. To give an affine group schemes over L (resp. K) is equivalent to give a
Hopf algebra over L (resp. K), that is an L-vector space with some algebraic
structures. These structures can be define as some mapping between L(resp.
K)-vector spaces. A twisted K-form of an affine group scheme split by L
is given by some descent data, two twisted form are isomorphic over K if
and only if they are isomorphic over L and this isomorphism commutes with
the descent data (i.e. morphism in the category of descent data). And the
isomorphic classes of twisted forms are classified by the Galois cohomology
H1(Gal(L/K), G) where G is the group of L-automorphisms of the affine
group scheme. For the most trivial case Gn

a , G = Gln, descent theory of
faithfully flat modules tells us that two descent data are isomorphic if and
only if the two vector spaces are isomorphic, but isomorphic classes of vector
spaces are determined by the dimension, so we obtain the following.

Corollary 6.1 (general Hilbert’s Theorem 90). H1(Gal(L/K),Gln) = 0.
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