Some Arithmetic Duality Theorems

LIANG, Yong Qi

Université de Paris-Sud XI, Orsay France

ALGANT thesis defence 2008-07-08 Brussels, Belgium

Outline of Part I

Galois cohomology

1 Local duality

- Duality with respect to a class formation
- Local duality
- Euler-Poincaré characteristic

2 An application to Abelian varieties

3 Global duality

- A duality theorem
- Poitou-Tate exact sequence
- Euler-Poincaré characteristic

Outline of Part I

Galois cohomology

1 Local duality

- Duality with respect to a class formation
- Local duality
- Euler-Poincaré characteristic

2 An application to Abelian varieties

3 Global duality

- A duality theorem
- Poitou-Tate exact sequence
- Euler-Poincaré characteristic

Outline of Part I

Galois cohomology

1 Local duality

- Duality with respect to a class formation
- Local duality
- Euler-Poincaré characteristic

2 An application to Abelian varieties

3 Global duality

- A duality theorem
- Poitou-Tate exact sequence
- Euler-Poincaré characteristic

Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology

- Some notations and calculations
- Euler-Poincaré characteristic
- 6 Artin-Verdier's theorem

- ∢ ≣ ▶

Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology

- Some notations and calculations
- Euler-Poincaré characteristic

Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology

- Some notations and calculations
- Euler-Poincaré characteristic

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)* = Cl(K)/mCl(K) for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for $E_{/\mathbb{Q}_p}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.

• A famous example : $III(\mathbb{Q}, E)$ for an elliptic curve.

- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

(日) (同) (三) (三)

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{et}(spec(O_K), ℤ/mℤ)* = Cl(K)/mCl(K) for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for $E_{/\mathbb{Q}_p}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.

• A famous example : $III(\mathbb{Q}, E)$ for an elliptic curve.

- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), Z/mZ)* = Cl(K)/mCl(K) for K a number field
 - e.g. $H^1(\mathbb{Q}_p, E)^* = E(\mathbb{Q}_p)$ for $E_{/\mathbb{Q}_p}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.

• A famous example : $III(\mathbb{Q}, E)$ for an elliptic curve.

- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - $\bullet\,$ e.g. $H^1(\mathbb{Q}_{\rho},E)^*=E(\mathbb{Q}_{\rho})$ for $E_{/\mathbb{Q}_{\rho}}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.

• A famous example : $III(\mathbb{Q}, E)$ for an elliptic curve.

- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - $\bullet\,$ e.g. $H^1(\mathbb{Q}_p,E)^*=E(\mathbb{Q}_p)$ for $E_{/\mathbb{Q}_p}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.

• A famous example : $III(\mathbb{Q}, E)$ for an elliptic curve.

- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - e.g. $H^1(\mathbb{Q}_{p},E)^*=E(\mathbb{Q}_{p})$ for $E_{/\mathbb{Q}_{p}}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.

• A famous example : $III(\mathbb{Q}, E)$ for an elliptic curve.

- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - $\bullet\,$ e.g. $\,H^1(\mathbb{Q}_{\rho},E)^*=E(\mathbb{Q}_{\rho})$ for $E_{/\mathbb{Q}_{\rho}}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.

• A famous example : $\operatorname{III}(\mathbb{Q}, E)$ for an elliptic curve.

- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - $\bullet\,$ e.g. $\,H^1(\mathbb{Q}_{\rho},E)^*=E(\mathbb{Q}_{\rho})$ for $E_{/\mathbb{Q}_{\rho}}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.
 - A famous example : $\operatorname{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

(人間) ト く ヨ ト (く ヨ ト

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - $\bullet\,$ e.g. $\,H^1(\mathbb{Q}_{\rho},E)^*=E(\mathbb{Q}_{\rho})$ for $E_{/\mathbb{Q}_{\rho}}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.
 - A famous example : $\operatorname{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - $\bullet\,$ e.g. $\,H^1(\mathbb{Q}_{\rho},E)^*=E(\mathbb{Q}_{\rho})$ for $E_{/\mathbb{Q}_{\rho}}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.
 - A famous example : $\operatorname{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.

• Allons-y !

・ 同 ト ・ ヨ ト ・ ヨ ト

Why arithmetic duality??

- In mathematics, solving equations is always interesting.
- e.g. rational points on a variety $V(\mathbb{Q}) = ?$
- Why Galois / étale cohomology?
 - e.g. H¹_{ét}(spec(O_K), ℤ/mℤ)^{*} = Cl(K)/mCl(K) for K a number field
 - $\bullet\,$ e.g. $\,H^1(\mathbb{Q}_{\rho},E)^*=E(\mathbb{Q}_{\rho})$ for $E_{/\mathbb{Q}_{\rho}}$ an elliptic curve
- They give some certain *obstructions* of the local-global principal for the problem of rational points.
 - A famous example : $\operatorname{III}(\mathbb{Q}, E)$ for an elliptic curve.
- Tentative conclusion : the cohomology groups contain important arithmetic information.
- Arithmetic duality theorems may help to understand the question of rational points.
- Allons-y !

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Part I

Galois cohomology

LIANG, Yong Qi Some Arithmetic Duality Theorems

・ロト ・日子・ ・ ヨト

æ

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Class formation

Definition

Let G be a profinite group, and C be a G-module (such that $C = \bigcup_{U \leqslant_o G} C^U$). We say that (G, C) is a *class formation* if there exists an isomorphism $inv_U : H^2(U, C) \xrightarrow{\simeq} \mathbb{Q}/\mathbb{Z}$ for each open subgroup $U \leqslant_o G$ with the commutative diagram for $V \leqslant_o U \leqslant_o G$:

and $H^1(U, C) = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Local duality An application to Abelian varieties Global duality Euler-Poincaré characteristic

Class formation

- $(G, C) = \text{class formation}, M = G\text{-module} \xrightarrow{} \text{natural pairing}:$ $Ext^r_G(M, C) \times H^{2-r}(G, M) \to H^2(G, C) \simeq \mathbb{Q}/\mathbb{Z},$ $\xrightarrow{}$
 - $\alpha^{r}(G,M): Ext_{G}^{r}(M,C) \to H^{2-r}(G,M)^{*} = Hom(H^{2-r}(G,M),\mathbb{Q}/\mathbb{Z})$
- On the other hand, $(G, C) \rightsquigarrow$ the reciprocity map

rec :
$$C^G \to G^{ab}$$
.

Local duality An application to Abelian varieties Global duality Euler-Poincaré characteristic

Class formation

- (G, C) = class formation, M = G-module → natural pairing: Ext^r_G(M, C) × H^{2-r}(G, M) → H²(G, C) ≃ Q/Z, → α^r(G, M) : Ext^r_G(M, C) → H^{2-r}(G, M)^{*} = Hom(H^{2-r}(G, M), Q/Z)
- On the other hand, $(G, C) \rightsquigarrow$ the reciprocity map

$$rec: C^G \to G^{ab}.$$

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Duality with respect to a class formation

Lemma

Let (G, C) be a class formation and M be a finite G-module, then

- (i) $\alpha^r(G, M)$ is bijective for all $r \ge 2$;
- (ii)α¹(G, M) is bijective if α¹(U, Z/mZ) is bijective for all m and all U ≤_o G;
- (iii)α⁰(G, M) is surjective (resp. bijective) if α⁰(U, Z/mZ) is surjective (resp. bijective) for all m and all U ≤_o G.

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Duality with respect to a class formation

Lemma

Let (G, C) be a class formation and M be a finite G-module, then

- (i) $\alpha^r(G, M)$ is bijective for all $r \ge 2$;
- (ii)α¹(G, M) is bijective if α¹(U, Z/mZ) is bijective for all m and all U ≤_o G;
- (iii)α⁰(G, M) is surjective (resp. bijective) if α⁰(U, Z/mZ) is surjective (resp. bijective) for all m and all U ≤_o G.

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Duality with respect to a class formation

Lemma

Let (G, C) be a class formation and M be a finite G-module, then

- (i) $\alpha^r(G, M)$ is bijective for all $r \ge 2$;
- (ii)α¹(G, M) is bijective if α¹(U, Z/mZ) is bijective for all m and all U ≤_o G;
- (iii)α⁰(G, M) is surjective (resp. bijective) if α⁰(U, Z/mZ) is surjective (resp. bijective) for all m and all U ≤_o G.

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Duality with respect to a class formation

Remark

P = a set of prime numbers Considering only the *P*-primary part, a *P*-class formation will give us a similar lemma.

< ロ > < 同 > < 回 > <

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Notations

• K = non-Archimedean local field

- k = residue field, char(k) = p
- $G = Gal(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Notations

- K = non-Archimedean local field
- k = residue field, char(k) = p
- $G = Gal(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Notations

- K = non-Archimedean local field
- k = residue field, char(k) = p
- $G = Gal(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Notations

- K = non-Archimedean local field
- k = residue field, char(k) = p
- $G = Gal(K^s/K)$
- (G, K^{s*}) is a class formation by LCFT

Local duality An application to Abelian varieties Global duality Euler-Poincaré characteristic

Local duality

Theorem

Let M be a finite G-module, then

$$\alpha^{r}(G,M): Ext^{r}_{G}(M,K^{s*}) \to H^{2-r}(G,M)^{*}$$

is an isomorphism for all r. If $char(K) \nmid \#M$, then $Ext_G^r(M, K^{s*})$ and $H^r(G, M)$ are finite.

Corollary

If $char(K) \nmid \#M$, then there exists a perfect pairing of finite groups (where $M^D = Hom(M, K^{s*})$)

$$H^r(G, M^D) imes H^{2-r}(G, M) o H^2(G, K^{s*}) \simeq \mathbb{Q}/\mathbb{Z}.$$

< ロ > < 同 > < 回 > <

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

- LCFT \rightsquigarrow info. of $rec : K^* \to G^{ab}$,
- $\alpha^1(G, \mathbb{Z}/m\mathbb{Z}) = rec^{(m)} : K^*/K^{*m} \to (G^{ab})^{(m)},$
- commutative diagram

(日) (同) (三) (三)

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

• LCFT
$$\rightsquigarrow$$
 info. of $rec : K^* \to G^{ab}$,

•
$$\alpha^1(G, \mathbb{Z}/m\mathbb{Z}) = \operatorname{rec}^{(m)} : K^*/K^{*m} \to (G^{ab})^{(m)},$$

commutative diagram

(日) (同) (三) (三)

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

• LCFT
$$\rightsquigarrow$$
 info. of $rec : K^* \to G^{ab}$,

•
$$\alpha^1(G, \mathbb{Z}/m\mathbb{Z}) = \operatorname{rec}^{(m)} : K^*/K^{*m} \to (G^{ab})^{(m)},$$

• commutative diagram

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case scd(G) = 2
 → H³(G, Z) = 0 → ψ: isomorphism,
- info. of rec \rightsquigarrow info. of $\begin{cases} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{cases}$

 $\bullet\,$ Apply the previous lemma $\Rightarrow\,$ the statement,

spectral sequence some simple calculations

 \rightsquigarrow finiteness.

 For the corollary, char(K) ∤ #M → identify Ext^r_G(M, K^{s*}) and H^r(G, M^D) by spectral sequence.

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case scd(G) = 2
 → H³(G, Z) = 0 → ψ: isomorphism,
- info. of rec \rightsquigarrow info. of $\begin{cases} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{cases}$

• Apply the previous lemma \Rightarrow the statement,

spectral sequence some simple calculations

 For the corollary, char(K) ∤ #M ~→ identify Ext^r_G(M, K^{s*}) and H^r(G, M^D) by spectral sequence.

• □ ▶ • • □ ▶ • • □ ▶
Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case scd(G) = 2
 → H³(G, Z) = 0 → ψ: isomorphism,
- info. of rec \rightsquigarrow info. of $\begin{cases} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{cases}$
- Apply the previous lemma \Rightarrow the statement,
- spectral sequence some simple calculations

ightarrow finiteness.

• For the corollary, $char(K) \nmid \#M \rightsquigarrow$ identify $Ext_G^r(M, K^{s*})$ and $H^r(G, M^D)$ by spectral sequence.

• □ ▶ • • □ ▶ • • □ ▶

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case scd(G) = 2
 → H³(G, Z) = 0 → ψ: isomorphism,
- info. of rec \rightsquigarrow info. of $\begin{cases} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{cases}$
- Apply the previous lemma \Rightarrow the statement,
- spectral sequence some simple calculations
 A finiteness.

 For the corollary, char(K) ∤ #M ~→ identify Ext^r_G(M, K^{s*}) and H^r(G, M^D) by spectral sequence.

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- In general, ψ: NOT a bijection, BUT in our case scd(G) = 2
 → H³(G, Z) = 0 → ψ: isomorphism,
- info. of rec \rightsquigarrow info. of $\begin{cases} \alpha^0(G, \mathbb{Z}/m\mathbb{Z}) \\ \alpha^1(G, \mathbb{Z}/m\mathbb{Z}) \end{cases}$
- $\bullet\,$ Apply the previous lemma $\Rightarrow\,$ the statement,
- spectral sequence some simple calculations
 A finiteness.
- For the corollary, char(K) ∤ #M ~→ identify Ext^r_G(M, K^{s*}) and H^r(G, M^D) by spectral sequence.

Duality with respect to a class formation Local duality Euler-Poincaré characteristic

Euler-Poincaré characteristic

We define the Euler-Poincaré characteristic $\chi(G, M) = \frac{\#H^0(G, M) \cdot \#H^2(G, M)}{\#H^1(G, M)}$, and we have the following formula

Theorem

For M finite of order m such that $char(K) \nmid m$, then

 $\chi(G,M)=|m|_{K}.$

Tate's theorem

As an application of the local duality theorem, we get

Theorem (Tate)

Let K be a non-Archimedean local field of characteristic 0, and A be an Abelian variety over K with dual A^t , then there exists a perfect pairing

 $A^t(K) \times H^1(K, A) \to \mathbb{Q}/\mathbb{Z}.$

- We are going to study the $Ext_{K}^{r}(-, \mathbb{G}_{m})$ sequence and $H^{r}(K, -)$ sequence of $0 \to A_{n} \to A \xrightarrow{n} A \to 0$,
- The local duality \rightsquigarrow info. of $\alpha^r(K, A_n)$,
- info. of $\alpha^r(K, A_n)$ local χ formula \longrightarrow info. of $\begin{cases} \alpha^r(K, A)_n \\ \alpha^r(K, A)^{(n)} \end{cases}$
- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula : $A^t(K) = Ext^1_K(A, \mathbb{G}_m)$

- We are going to study the $Ext_{K}^{r}(-, \mathbb{G}_{m})$ sequence and $H^{r}(K, -)$ sequence of $0 \to A_{n} \to A \xrightarrow{n} A \to 0$,
- The local duality \rightsquigarrow info. of $\alpha^r(K, A_n)$,
- info. of $\alpha^r(K, A_n)$ local χ formula \longrightarrow info. of $\begin{cases} \alpha^r(K, A)_n \\ \alpha^r(K, A)^{(n)} \end{cases}$
- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula : $A^t(K) = Ext^1_K(A, \mathbb{G}_m)$

- We are going to study the $Ext_{K}^{r}(-, \mathbb{G}_{m})$ sequence and $H^{r}(K, -)$ sequence of $0 \to A_{n} \to A \xrightarrow{n} A \to 0$,
- The local duality \rightsquigarrow info. of $\alpha^r(K, A_n)$,
- info. of $\alpha^r(K, A_n)$ local χ formula \longrightarrow info. of $\begin{cases} \alpha^r(K, A)_n \\ \alpha^r(K, A)^{(n)} \end{cases}$
- Take the limit on *n*, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula : $A^t(K) = Ext^1_K(A, \mathbb{G}_m)$

- We are going to study the $Ext_{K}^{r}(-, \mathbb{G}_{m})$ sequence and $H^{r}(K, -)$ sequence of $0 \to A_{n} \to A \xrightarrow{n} A \to 0$,
- The local duality \rightsquigarrow info. of $\alpha^r(K, A_n)$,
- info. of $\alpha^r(K, A_n)$ local χ formula \longrightarrow info. of $\begin{cases} \alpha^r(K, A)_n \\ \alpha^r(K, A)^{(n)} \end{cases}$
- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula : $A^t(K) = Ext^1_K(A, \mathbb{G}_m)$

- We are going to study the $Ext_{K}^{r}(-, \mathbb{G}_{m})$ sequence and $H^{r}(K, -)$ sequence of $0 \to A_{n} \to A \xrightarrow{n} A \to 0$,
- The local duality \rightsquigarrow info. of $\alpha^r(K, A_n)$,
- info. of $\alpha^r(K, A_n)$ local χ formula \longrightarrow info. of $\begin{cases} \alpha^r(K, A)_n \\ \alpha^r(K, A)^{(n)} \end{cases}$
- Take the limit on n, get the info. on $\alpha^r(K, A)$: iso.,
- Finally, Barsotti-Weil formula : $A^t(K) = Ext^1_K(A, \mathbb{G}_m)$

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

• K = a global field

- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

• □ ▶ • • □ ▶ • • □ ▶ •

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers
 for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- *K* = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.
- $J_{F,S} = \prod_{w \in S_F}' F_w^*$, *S*-idèles
- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_S\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

- $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units
- $C_{F,S} = J_{F,S}/E_{F,S}$ and $C_S = \varinjlim_F C_{F,S}$
- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_{S}\}$
- (G_S, C_S) is a *P*-class formation by GCFT

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

Notations

- K = a global field
- $S \neq \emptyset$ a set of places containing all the archimedean places
- K_S = the maximal extension of K unramified outside S
- $G_S = Gal(K_S/K)$
- *O*_{F,S} = {x ∈ F; w(x) ≥ 0, ∀w ∉ S}, S-integers for K ⊆ F ⊆ K_S with F/K finite (Galois) extension.

•
$$J_{F,S} = \prod_{w \in S_F}' F_w^*$$
, S-idèles

• $E_{F,S} = \mathcal{O}_{F,S}^{\times} = \{x \in F; w(x) = 0, \forall w \notin S\}, S$ -units

•
$$C_{F,S} = J_{F,S}/E_{F,S}$$
 and $C_S = \varinjlim_F C_{F,S}$

- $P = \{p \text{ prime number}; p^{\infty} \mid \#G_{S}\}$
- (G_S, C_S) is a *P*-class formation by GCFT

イロト イポト イラト イラト

A duality theorem Poitou-Tate exact sequence Euler-Poincaré characteristic

A duality theorem

Theorem

Let M be a finite G_S -module, then for any prime number $p \in P$,

$$\alpha^{r}(G_{S},M)(p): Ext^{r}_{G_{S}}(M,C_{S})(p) \xrightarrow{\simeq} H^{2-r}(G_{S},M)^{*}(p)$$

is an isomorphism for $r \ge 1$. Moreover, if K is a function field then the statement is also true for r = 0, in which case P is all the prime numbers.

Proof.

The proof: similar to the local case, BUT in case K = number field, NOT necessary that $scd(G_S) = 2$, GCFT \rightsquigarrow info. of $rec \Rightarrow$ info. of $\alpha^0(G_S, \mathbb{Z}/p^s\mathbb{Z})$, that is why the statement is only for $r \ge 1$ in this case.

Notations

•
$$M^D = Hom(M, K_S^*)$$

•
$$G_v = Gal(K_v^s/K_v) \twoheadrightarrow g_v = Gal(k(v)^s/k(v))$$

•
$$H^r(K_v, M) = \begin{cases} H^r_T(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedea} \end{cases}$$

•
$$H^r_{un}(K_v, M) = im(H^r(g_v, M) \rightarrow H^r(G_v, M))$$
 for $v \notin S_{\infty}$

•
$$P_S^r(K, M) = \prod_{v \in S}' H^r(K_v, M)$$
 restrict prod. wrt. $H_{un}^r(K_v, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta_S^r(K,M): H^r(G_S,M) \to P_S^r(K,M)$
- $\operatorname{III}_{S}^{r}(K, M) = ker(\beta_{S}^{r}(K, M))$

Notations

•
$$M^D = Hom(M, K_s^s)$$

• $G_v = Gal(K_v^s/K_v) \twoheadrightarrow g_v = Gal(k(v)^s/k(v))$
• $H^r(K_v, M) = \begin{cases} H^r_T(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedea} \end{cases}$

•
$$H^r_{un}(K_v, M) = im(H^r(g_v, M) \to H^r(G_v, M))$$
 for $v \notin S_\infty$

•
$$P_S^r(K, M) = \prod_{v \in S}' H^r(K_v, M)$$
 restrict prod. wrt. $H_{un}^r(K_v, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta_S^r(K,M): H^r(G_S,M) \to P_S^r(K,M)$
- $\operatorname{III}_{S}^{r}(K, M) = ker(\beta_{S}^{r}(K, M))$

Notations

•
$$M^{D} = Hom(M, K_{S}^{*})$$

• $G_{v} = Gal(K_{v}^{s}/K_{v}) \twoheadrightarrow g_{v} = Gal(k(v)^{s}/k(v))$
• $H^{r}(K_{v}, M) = \begin{cases} H^{r}_{T}(G_{v}, M), & v \in S_{\infty} \\ H^{r}(G_{v}, M), & v \text{ non-Archimedean} \end{cases}$
• $H^{r}_{un}(K_{v}, M) = im(H^{r}(g_{v}, M) \rightarrow H^{r}(G_{v}, M)) \text{ for } v \notin S_{\infty}$
• $P^{r}_{S}(K, M) = \prod_{v \in S}' H^{r}(K_{v}, M) \text{ restrict prod. wrt. } H^{r}_{un}(K_{v}, M)$

_emma

The image of the homomorphism $H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta_S^r(K,M): H^r(G_S,M) \to P_S^r(K,M)$
- $\operatorname{III}_{S}^{r}(K, M) = ker(\beta_{S}^{r}(K, M))$

Notations

•
$$M^{D} = Hom(M, K_{S}^{*})$$

• $G_{v} = Gal(K_{v}^{s}/K_{v}) \twoheadrightarrow g_{v} = Gal(k(v)^{s}/k(v))$
• $H^{r}(K_{v}, M) = \begin{cases} H^{r}_{T}(G_{v}, M), & v \in S_{\infty} \\ H^{r}(G_{v}, M), & v \text{ non-Archimedean} \end{cases}$
• $H^{r}_{un}(K_{v}, M) = im(H^{r}(g_{v}, M) \rightarrow H^{r}(G_{v}, M)) \text{ for } v \notin S_{\infty}$
• $P^{r}_{S}(K, M) = \prod_{v \in S}' H^{r}(K_{v}, M) \text{ restrict prod. wrt. } H^{r}_{un}(K_{v}, M)$

_emma

The image of the homomorphism $H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta_S^r(K,M): H^r(G_S,M) \to P_S^r(K,M)$
- $\operatorname{III}_{S}^{r}(K, M) = ker(\beta_{S}^{r}(K, M))$

Notations

•
$$M^{D} = Hom(M, K_{S}^{*})$$

• $G_{v} = Gal(K_{v}^{s}/K_{v}) \rightarrow g_{v} = Gal(k(v)^{s}/k(v))$
• $H^{r}(K_{v}, M) = \begin{cases} H_{T}^{r}(G_{v}, M), & v \in S_{\infty} \\ H^{r}(G_{v}, M), & v \text{ non-Archimedean} \end{cases}$
• $H_{un}^{r}(K_{v}, M) = im(H^{r}(g_{v}, M) \rightarrow H^{r}(G_{v}, M)) \text{ for } v \notin S_{\infty}$
• $P_{S}^{r}(K, M) = \prod_{v \in S}' H^{r}(K_{v}, M) \text{ restrict prod. wrt. } H_{un}^{r}(K_{v}, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta_S^r(K,M): H^r(G_S,M) \to P^r_S(K,M)$
- $\operatorname{III}_{S}^{r}(K, M) = ker(\beta_{S}^{r}(K, M))$

Notations

•
$$M^{D} = Hom(M, K_{S}^{*})$$

• $G_{v} = Gal(K_{v}^{s}/K_{v}) \rightarrow g_{v} = Gal(k(v)^{s}/k(v))$
• $H^{r}(K_{v}, M) = \begin{cases} H_{T}^{r}(G_{v}, M), & v \in S_{\infty} \\ H^{r}(G_{v}, M), & v \text{ non-Archimedean} \end{cases}$
• $H_{un}^{r}(K_{v}, M) = im(H^{r}(g_{v}, M) \rightarrow H^{r}(G_{v}, M)) \text{ for } v \notin S_{\infty}$
• $P_{S}^{r}(K, M) = \prod_{v \in S}' H^{r}(K_{v}, M) \text{ restrict prod. wrt. } H_{un}^{r}(K_{v}, M)$

Lemma

The image of the homomorphism $H^r(G_S, M) \to \prod_{v \in S} H^r(K_v, M)$ is contained in $P^r_S(K, M)$.

- $\beta_S^r(K, M) : H^r(G_S, M) \to P_S^r(K, M)$
- $\operatorname{III}_{S}^{r}(K, M) = ker(\beta_{S}^{r}(K, M))$

Notations

•
$$M^D = Hom(M, K_S^*)$$

• $G_v = Gal(K_v^s/K_v) \twoheadrightarrow g_v = Gal(k(v)^s/k(v))$
• $H^r(K_v, M) = \begin{cases} H_T^r(G_v, M), & v \in S_\infty \\ H^r(G_v, M), & v \text{ non-Archimedean} \end{cases}$
• $H_{un}^r(K_v, M) = im(H^r(g_v, M) \rightarrow H^r(G_v, M)) \text{ for } v \notin S_\infty$
• $P_S^r(K, M) = \prod_{v \in S}' H^r(K_v, M) \text{ restrict prod. wrt. } H_{un}^r(K_v, M)$

Lemma

The image of the homomorphism $H^{r}(G_{S}, M) \rightarrow \prod_{v \in S} H^{r}(K_{v}, M)$ is contained in $P_{S}^{r}(K, M)$.

- $\beta_S^r(K, M) : H^r(G_S, M) \to P_S^r(K, M)$
- $\coprod_{S}^{r}(K, M) = ker(\beta_{S}^{r}(K, M))$

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

- (i) The map β¹_S(K, M) is proper, in particular III¹_S(K, M) is finite.
- (ii)There exists a perfect pairing of finite groups

 $\operatorname{III}^1_{\mathcal{S}}(K,M) \times \operatorname{III}^2_{\mathcal{S}}(K,M^D) \to \mathbb{Q}/\mathbb{Z}.$

• (iii)For $r \ge 3$, $\beta_S^r(K, M) : H^r(G_S, M) \xrightarrow{\simeq} \prod_{v \in S^{\mathbb{R}}} H^r(K_v, M)$ is an isomorphism.

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

- (i)The map β¹_S(K, M) is proper, in particular III¹_S(K, M) is finite.
- (ii)There exists a perfect pairing of finite groups

 $\operatorname{III}^1_{\mathcal{S}}(K,M) \times \operatorname{III}^2_{\mathcal{S}}(K,M^D) \to \mathbb{Q}/\mathbb{Z}.$

• (iii)For $r \ge 3$, $\beta_S^r(K, M) : H^r(G_S, M) \xrightarrow{\simeq} \prod_{v \in S^{\mathbb{R}}} H^r(K_v, M)$ is an isomorphism.

(日) (同) (三) (三)

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

- (i)The map β¹_S(K, M) is proper, in particular III¹_S(K, M) is finite.
- (ii)There exists a perfect pairing of finite groups

 $\operatorname{III}^1_{\mathcal{S}}(K,M) \times \operatorname{III}^2_{\mathcal{S}}(K,M^D) \to \mathbb{Q}/\mathbb{Z}.$

• (iii)For $r \ge 3$, $\beta_S^r(K, M) : H^r(G_S, M) \xrightarrow{\simeq} \prod_{v \in S^{\mathbb{R}}} H^r(K_v, M)$ is an isomorphism.

(日) (同) (三) (三)

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite G_S-module of order m satisfying $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, then

- (i)The map β¹_S(K, M) is proper, in particular III¹_S(K, M) is finite.
- (ii)There exists a perfect pairing of finite groups

$$\operatorname{III}^1_{\mathcal{S}}(K,M) \times \operatorname{III}^2_{\mathcal{S}}(K,M^D) \to \mathbb{Q}/\mathbb{Z}.$$

• (iii)For $r \ge 3$, $\beta_S^r(K, M) : H^r(G_S, M) \xrightarrow{\simeq} \prod_{v \in S^{\mathbb{R}}} H^r(K_v, M)$ is an isomorphism.

A duality theorem **Poitou-Tate exact sequence** Euler-Poincaré characteristic

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

• (iv)There is an exact sequence

< ロ > < 同 > < 回 > <

A duality theorem **Poitou-Tate exact sequence** Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

- (i)Properness of β¹_S(K, M): Spectral sequence → reduction to simple case,
- Direct calculations for the simple case, finiteness of class group ⇒ properness of β¹_S(K, M).
- Poitou-Tate sequence \Rightarrow (ii)perfect pairing of III.

< ロ > < 同 > < 回 > .

A duality theorem **Poitou-Tate exact sequence** Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

- (i)Properness of β¹_S(K, M): Spectral sequence → reduction to simple case,
- Direct calculations for the simple case, finiteness of class group ⇒ properness of β¹_S(K, M).
- Poitou-Tate sequence \Rightarrow (ii)perfect pairing of III.

< D > < P > < P > < P >

A duality theorem **Poitou-Tate exact sequence** Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

- (i)Properness of β¹_S(K, M): Spectral sequence → reduction to simple case,
- Direct calculations for the simple case, finiteness of class group \Rightarrow properness of $\beta_{S}^{1}(K, M)$.
- Poitou-Tate sequence \Rightarrow (ii)perfect pairing of III.

< D > < P > < P > < P >
Local duality An application to Abelian varieties Global duality Euler-P

A duality theorem **Poitou-Tate exact sequence** Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- (iii)&(iv): Local duality \rightsquigarrow $\gamma_{\mathcal{S}}^{r}(\mathcal{K}, M^{D}) : P_{\mathcal{S}}^{r}(\mathcal{K}, M^{D}) \rightarrow H^{2-r}(\mathcal{G}_{\mathcal{S}}, M)^{*}$ is the dual of $\beta_{\mathcal{S}}^{2-r}(\mathcal{K}, M) : H^{2-r}(\mathcal{G}_{\mathcal{S}}, M) \rightarrow P_{\mathcal{S}}^{2-r}(\mathcal{K}, M),$
- Symmetry \Rightarrow only need to proof the second half of the sequence,
- $Ext_{G_S}^r(M^D, -), 0 \to E_S \to J_S \to C_S \to 0 \rightsquigarrow$ long exact sequence,
- Complicated calculations $\Rightarrow Ext_{G_S}^r(M^D, E_S) = H^r(G_S, M)$ and $Ext_{G_S}^r(M^D, J_S) = P_S^r(K, M)$ for any r,
- Previous duality theorem $\Rightarrow Ext_{G_S}^r(M^D, C_S) = H^r(G_S, M^D)^*$ for $r \ge 1$ (the last six terms of the Poitou-Tate sequence).

Local duality A duality theorem An application to Abelian varieties Global duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- (iii)&(iv): Local duality \rightsquigarrow $\gamma_{\mathcal{S}}^{r}(\mathcal{K}, M^{D}) : P_{\mathcal{S}}^{r}(\mathcal{K}, M^{D}) \rightarrow H^{2-r}(\mathcal{G}_{\mathcal{S}}, M)^{*}$ is the dual of $\beta_{\mathcal{S}}^{2-r}(\mathcal{K}, M) : H^{2-r}(\mathcal{G}_{\mathcal{S}}, M) \rightarrow P_{\mathcal{S}}^{2-r}(\mathcal{K}, M),$
- Symmetry \Rightarrow only need to proof the second half of the sequence,
- $Ext_{G_S}^r(M^D, -), 0 \to E_S \to J_S \to C_S \to 0 \rightsquigarrow$ long exact sequence,
- Complicated calculations $\Rightarrow Ext_{G_S}^r(M^D, E_S) = H^r(G_S, M)$ and $Ext_{G_S}^r(M^D, J_S) = P_S^r(K, M)$ for any r,
- Previous duality theorem $\Rightarrow Ext_{G_S}^r(M^D, C_S) = H^r(G_S, M^D)^*$ for $r \ge 1$ (the last six terms of the Poitou-Tate sequence).

Local duality An application to Abelian varieties Global duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- (iii)&(iv): Local duality \rightsquigarrow $\gamma_{\mathcal{S}}^{r}(\mathcal{K}, M^{D}) : P_{\mathcal{S}}^{r}(\mathcal{K}, M^{D}) \rightarrow H^{2-r}(G_{\mathcal{S}}, M)^{*}$ is the dual of $\beta_{\mathcal{S}}^{2-r}(\mathcal{K}, M) : H^{2-r}(G_{\mathcal{S}}, M) \rightarrow P_{\mathcal{S}}^{2-r}(\mathcal{K}, M),$
- Symmetry \Rightarrow only need to proof the second half of the sequence,
- $Ext^r_{G_S}(M^D, -), 0 \to E_S \to J_S \to C_S \to 0 \rightsquigarrow$ long exact sequence,
- Complicated calculations $\Rightarrow Ext_{G_S}^r(M^D, E_S) = H^r(G_S, M)$ and $Ext_{G_S}^r(M^D, J_S) = P_S^r(K, M)$ for any r,
- Previous duality theorem $\Rightarrow Ext_{G_S}^r(M^D, C_S) = H^r(G_S, M^D)^*$ for $r \ge 1$ (the last six terms of the Poitou-Tate sequence).

Local duality A duality theorem An application to Abelian varieties Global duality

Poitou-Tate exact sequence Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- (iii)&(iv): Local duality $\sim \rightarrow$ $\gamma_{\mathsf{S}}^{\mathsf{r}}(\mathsf{K},\mathsf{M}^{D}): P_{\mathsf{S}}^{\mathsf{r}}(\mathsf{K},\mathsf{M}^{D}) \to H^{2-\mathsf{r}}(\mathsf{G}_{\mathsf{S}},\mathsf{M})^{*}$ is the dual of $\beta_{\mathsf{S}}^{2-r}(K,M): \check{H}^{2-r}(G_{\mathsf{S}},M) \to P_{\mathsf{S}}^{2-r}(K,M),$
- Symmetry \Rightarrow only need to proof the second half of the sequence,
- $Ext_{C_{c}}^{r}(M^{D}, -), 0 \rightarrow E_{S} \rightarrow J_{S} \rightarrow C_{S} \rightarrow 0 \rightsquigarrow \text{long exact}$ sequence,
- Complicated calculations $\Rightarrow Ext_{G_s}^r(M^D, E_S) = H^r(G_S, M)$ and $Ext_{G_s}^r(M^D, J_S) = P_S^r(K, M)$ for any r,
- Previous duality theorem $\Rightarrow Ext_{G_S}^r(M^D, C_S) = H^r(G_S, M^D)^*$

イロト イポト イヨト イヨト

Local duality A duality theorem An application to Abelian varieties Global duality

Poitou-Tate exact sequence Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

- (iii)&(iv): Local duality → $\gamma_{\mathsf{S}}^{\mathsf{r}}(\mathsf{K},\mathsf{M}^{D}): P_{\mathsf{S}}^{\mathsf{r}}(\mathsf{K},\mathsf{M}^{D}) \to H^{2-\mathsf{r}}(\mathsf{G}_{\mathsf{S}},\mathsf{M})^{*}$ is the dual of $\beta_{\mathsf{S}}^{2-r}(K,M): \check{H}^{2-r}(G_{\mathsf{S}},M) \to P_{\mathsf{S}}^{2-r}(K,M),$
- Symmetry \Rightarrow only need to proof the second half of the sequence,
- $Ext_{C_{c}}^{r}(M^{D}, -), 0 \rightarrow E_{S} \rightarrow J_{S} \rightarrow C_{S} \rightarrow 0 \rightsquigarrow \text{long exact}$ sequence,
- Complicated calculations $\Rightarrow Ext_{G_S}^r(M^D, E_S) = H^r(G_S, M)$ and $Ext_{G_s}^r(M^D, J_S) = P_S^r(K, M)$ for any r,
- Previous duality theorem $\Rightarrow Ext_{G_S}^r(M^D, C_S) = H^r(G_S, M^D)^*$ for $r \ge 1$ (the last six terms of the Poitou-Tate sequence).

イロト イポト イヨト イヨト

If m = #M such that $m\mathcal{O}_{K,S} = \mathcal{O}_{K,S}$, and if S is finite, then $H^r(G_S, M)$ is finite, we define

$$\chi(G_S, M) = \frac{\#H^0(G_S, M) \cdot \#H^2(G_S, M)}{\#H^1(G_S, M)},$$

we have the following formula

Theorem

$$\chi(G_S, M) = \prod_{\nu \in S_{\infty}} \frac{\# H^0(G_{\nu}, M)}{|m|_{\nu}}$$

< ロト < 同ト < ヨト

Local duality Global cohomology Artin-Verdier's theorem

Part II

Etale cohomology

LIANG, Yong Qi Some Arithmetic Duality Theorems

・ロト ・日子・ ・ ヨト

- From now on, all the cohomology groups = étale cohomology groups, "sheaf" = étale sheaf of abelian groups
- R: Henselian DVR, K = Frac(R), $k = R/\mathfrak{m}$ residue field
- $X = spec(R) = \{u, x\}$ where

• $j: u = spec(K) \rightarrow X$ is the generic point

• $i: x = spec(k) \rightarrow X$ is the closed point

< 🗇 > < 🖻 > .

- From now on, all the cohomology groups = étale cohomology groups, "sheaf" = étale sheaf of abelian groups
- R: Henselian DVR, K = Frac(R), $k = R/\mathfrak{m}$ residue field
- $X = spec(R) = \{u, x\}$ where

j : u = spec(K) → X is the generic point
 i : x = spec(k) → X is the closed point

A (10) A (10)

- From now on, all the cohomology groups = étale cohomology groups, "sheaf" = étale sheaf of abelian groups
- R: Henselian DVR, K = Frac(R), $k = R/\mathfrak{m}$ residue field

•
$$X = spec(R) = \{u, x\}$$
 where

•
$$j: u = spec(K) \rightarrow X$$
 is the generic point

•
$$i: x = spec(k) \rightarrow X$$
 is the closed point

The local duality theorem

Theorem

Suppose that k is a finite field. Let \mathcal{F} be a constructible sheaf on X, if one of the following conditions holds (1)K is complete, (2)char(K) = 0, (3)char(K) = p and $p\mathcal{F} = \mathcal{F}$, then we have a perfect pairing:

$$\operatorname{Ext}_X^r(\mathcal{F},\mathbb{G}_m) imes H^{3-r}_x(X,\mathcal{F}) o H^3_x(X,\mathbb{G}_m)\simeq \mathbb{Q}/\mathbb{Z}.$$

Corollary

Suppose that k is finite of characteristic p, for a locally constant constructible sheaf \mathcal{F} on X such that $p\mathcal{F} = \mathcal{F}$, then we have a perfect pairing (where $\mathcal{F}^D = \mathcal{H}om_X(\mathcal{F}, \mathbb{G}_m)$)

$$H^r(X,\mathcal{F}^D) imes H^{3-r}_x(X,\mathcal{F}) \to \mathbb{Q}/\mathbb{Z}.$$

Sketch of proof.

- For sheaves of the form j₁ *F*, we identify the pairing with the local duality of Galois cohomology,
- ② For sheaves of the form i_{*}F, we identify the pairing with the duality of the class formation (Gal(k^s/k), Z),
- Sinally, for general *F* we take the cohomology sequence and *Ext* sequence of

$$0 \to j_! j^* \mathcal{F} \to \mathcal{F} \to i_* i^* \mathcal{F} \to 0$$

and combine the first two cases.

O For the corollary, pF = F → identify Ext^r_X(F, G_m) and H^r(X, F^D) by the local-global Ext spectral sequence.

Sketch of proof.

- For sheaves of the form j₁ *F*, we identify the pairing with the local duality of Galois cohomology,
- ② For sheaves of the form *i*_{*}*F*, we identify the pairing with the duality of the class formation (*Gal*(*k^s*/*k*), ℤ),
- Sinally, for general *F* we take the cohomology sequence and *Ext* sequence of

$$0 \to j_! j^* \mathcal{F} \to \mathcal{F} \to i_* i^* \mathcal{F} \to 0$$

and combine the first two cases.

● For the corollary, pF = F ~→ identify Ext^r_X(F, G_m) and H^r(X, F^D) by the local-global Ext spectral sequence.

Sketch of proof.

- For sheaves of the form j₁ *F*, we identify the pairing with the local duality of Galois cohomology,
- ② For sheaves of the form *i*_{*}*F*, we identify the pairing with the duality of the class formation (*Gal*(*k^s*/*k*), ℤ),

$$0 \to j_! j^* \mathcal{F} \to \mathcal{F} \to i_* i^* \mathcal{F} \to 0$$

and combine the first two cases.

• For the corollary, $p\mathcal{F} = \mathcal{F} \rightsquigarrow$ identify $Ext_X^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(X, \mathcal{F}^D)$ by the local-global *Ext* spectral sequence.

Sketch of proof.

- For sheaves of the form j₁ *F*, we identify the pairing with the local duality of Galois cohomology,
- ② For sheaves of the form *i*_{*}*F*, we identify the pairing with the duality of the class formation (*Gal*(*k^s*/*k*), ℤ),

$$0 \to j_! j^* \mathcal{F} \to \mathcal{F} \to i_* i^* \mathcal{F} \to 0$$

and combine the first two cases.

• For the corollary, $p\mathcal{F} = \mathcal{F} \rightsquigarrow$ identify $Ext_X^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(X, \mathcal{F}^D)$ by the local-global Ext spectral sequence.

イロト イポト イヨト イヨト

• K: a global field

- X
- $X = spec(\mathcal{O}_K)$ if K is a number field
- X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$,
 - $j: V \rightarrow U =$ the open immersion
 - $i: U \setminus V = Z \rightarrow U =$ the (reduced) closed immersion
- For a closed point v of X, O^h_v = Henselization of the stalk of O_X at v, K_v = Frac(O^h_v)
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}

- K: a global field
- X
- $X = spec(\mathcal{O}_{K})$ if K is a number field
- X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$,
 - $j: V \rightarrow U =$ the open immersion
 - $i: U \setminus V = Z \rightarrow U =$ the (reduced) closed immersion
- For a closed point v of X, O^h_v = Henselization of the stalk of O_X at v, K_v = Frac(O^h_v)
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}

- K: a global field
- X
- $X = spec(\mathcal{O}_K)$ if K is a number field
- X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$, $j: V \rightarrow U =$ the open immersion $i: U \setminus V = Z \rightarrow U =$ the (reduced) closed immersion
- For a closed point v of X, \mathcal{O}_v^h = Henselization of the stalk of \mathcal{O}_X at v, $K_v = Frac(\mathcal{O}_v^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}

- K: a global field
- X
- $X = spec(\mathcal{O}_{K})$ if K is a number field
- X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$,
 - $j: V \rightarrow U =$ the open immersion
 - $i: U \setminus V = Z \rightarrow U =$ the (reduced) closed immersion
- For a closed point v of X, \mathcal{O}_v^h = Henselization of the stalk of \mathcal{O}_X at v, $K_v = Frac(\mathcal{O}_v^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}

- K: a global field
- X
- $X = spec(\mathcal{O}_K)$ if K is a number field
- X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$,
 - $j: V \rightarrow U =$ the open immersion
 - $i: U \setminus V = Z \rightarrow U =$ the (reduced) closed immersion
- For a closed point v of X, \mathcal{O}_v^h = Henselization of the stalk of \mathcal{O}_X at v, $K_v = Frac(\mathcal{O}_v^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}

- K: a global field
- X
- $X = spec(\mathcal{O}_K)$ if K is a number field
- X the unique complete smooth curve with function field K
- Usually, for open subschemes $V \subset U \subseteq X$, $i: V \rightarrow U =$ the open immersion
 - $i: U \setminus V = Z \rightarrow U =$ the (reduced) closed immersion
- For a closed point v of X, \mathcal{O}_v^h = Henselization of the stalk of \mathcal{O}_X at v, $K_v = Frac(\mathcal{O}_v^h)$
- For an Archimedean place v, we set $K_v = \mathbb{R}$ or \mathbb{C}

- We can compute $H^{r}(U, \mathbb{G}_{m})$, they are related to the ideal class group (or Pic(U)) and the group of unites.
- We can define $H_c^r(U, \mathcal{F}) =$ "cohomology with compact support"
 - in case K = function field, H^r_c(U, F) ≃ H^r(X, j_lF) is the cohomology with compact support in the classic sense;
 - if K = number field, H^r_c(U, F) is NOT the classic one, but it will give the perfect pairing in the future.
- The important point : $H_c^r(U, \mathcal{F})$ is fixed into a long exact sequence

$$\cdots \to H^r_c(U,\mathcal{F}) \to H^r(U,\mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v,\mathcal{F}_v) \to \cdots.$$

• Then we can also compute $H^r_c(U, \mathbb{G}_m), \ H^3_c(U, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}.$

- We can compute $H^{r}(U, \mathbb{G}_{m})$, they are related to the ideal class group (or Pic(U)) and the group of unites.
- We can define H^r_c(U, F) = "cohomology with compact support"
 - in case K = function field, H^r_c(U, F) ≃ H^r(X, j_!F) is the cohomology with compact support in the classic sense;
 - if K = number field, $H_c^r(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point : $H_c^r(U, \mathcal{F})$ is fixed into a long exact sequence

$$\cdots \to H^r_c(U,\mathcal{F}) \to H^r(U,\mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v,\mathcal{F}_v) \to \cdots.$$

• Then we can also compute $H^r_c(U,\mathbb{G}_m), \ H^3_c(U,\mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}.$

- We can compute $H^{r}(U, \mathbb{G}_{m})$, they are related to the ideal class group (or Pic(U)) and the group of unites.
- We can define H^r_c(U, F) = "cohomology with compact support"
 - in case K = function field, H^r_c(U, F) ≃ H^r(X, j_!F) is the cohomology with compact support in the classic sense;
 - if K = number field, $H_c^r(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point : $H_c^r(U, \mathcal{F})$ is fixed into a long exact sequence

$$\cdots \to H^r_c(U,\mathcal{F}) \to H^r(U,\mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v,\mathcal{F}_v) \to \cdots.$$

• Then we can also compute $H^r_c(U,\mathbb{G}_m), \ H^3_c(U,\mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}.$

- We can compute $H^{r}(U, \mathbb{G}_{m})$, they are related to the ideal class group (or Pic(U)) and the group of unites.
- We can define H^r_c(U, F) = "cohomology with compact support"
 - in case K = function field, H^r_c(U, F) ≃ H^r(X, j_!F) is the cohomology with compact support in the classic sense;
 - if K = number field, $H_c^r(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point : $H_c^r(U, \mathcal{F})$ is fixed into a long exact sequence

$$\cdots \to H^r_c(U,\mathcal{F}) \to H^r(U,\mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v,\mathcal{F}_v) \to \cdots$$

• Then we can also compute $H^r_c(U, \mathbb{G}_m), \ H^3_c(U, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}.$

- We can compute $H^{r}(U, \mathbb{G}_{m})$, they are related to the ideal class group (or Pic(U)) and the group of unites.
- We can define H^r_c(U, F) = "cohomology with compact support"
 - in case K = function field, H^r_c(U, F) ≃ H^r(X, j_!F) is the cohomology with compact support in the classic sense;
 - if K = number field, $H_c^r(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point : $H_c^r(U, \mathcal{F})$ is fixed into a long exact sequence

$$\cdots \to H^r_c(U,\mathcal{F}) \to H^r(U,\mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v,\mathcal{F}_v) \to \cdots$$

• Then we can also compute $H^r_c(U, \mathbb{G}_m), H^3_c(U, \mathbb{G}_m) \simeq \mathbb{Q}/\mathbb{Z}$.

- We can compute $H^{r}(U, \mathbb{G}_{m})$, they are related to the ideal class group (or Pic(U)) and the group of unites.
- We can define H^r_c(U, F) = "cohomology with compact support"
 - in case K = function field, H^r_c(U, F) ≃ H^r(X, j_!F) is the cohomology with compact support in the classic sense;
 - if K = number field, $H_c^r(U, \mathcal{F})$ is NOT the classic one, but it will give the perfect pairing in the future.
- The important point : $H_c^r(U, \mathcal{F})$ is fixed into a long exact sequence

$$\cdots \to H^r_c(U,\mathcal{F}) \to H^r(U,\mathcal{F}) \to \bigoplus_{v \notin U} H^r(K_v,\mathcal{F}_v) \to \cdots$$

• Then we can also compute $H^r_c(U,\mathbb{G}_m),\ H^3_c(U,\mathbb{G}_m)\simeq \mathbb{Q}/\mathbb{Z}.$

For an open subscheme U of X,

 $\mathcal{F} \in Sh(U)$ constructible sheaf s.t. $\exists m \in \mathbb{Z}$ satisfying $m\mathcal{F} = 0$ and m invertible on U (i.e. $m\mathcal{O}_v = \mathcal{O}_v$ for all closed point $v \in U$), then $H^r(U, \mathcal{F})$ and $H^r_c(U, \mathcal{F})$ are finite, we define

• $\chi(U, \mathcal{F}) = \frac{\#H^0(U, \mathcal{F}) \cdot \#H^2(U, \mathcal{F})}{\#H^1(U, \mathcal{F}) \cdot \#H^3(U, \mathcal{F})}$ • $\chi_c(U, \mathcal{F}) = \frac{\#H^0_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}{\#H^1_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}$

For an open subscheme U of X,

 $\mathcal{F} \in Sh(U)$ constructible sheaf s.t. $\exists m \in \mathbb{Z}$ satisfying $m\mathcal{F} = 0$ and m invertible on U (i.e. $m\mathcal{O}_v = \mathcal{O}_v$ for all closed point $v \in U$), then $H^r(U, \mathcal{F})$ and $H^r_c(U, \mathcal{F})$ are finite, we define

•
$$\chi(U, \mathcal{F}) = \frac{\#H^0(U, \mathcal{F}) \cdot \#H^2(U, \mathcal{F})}{\#H^1(U, \mathcal{F}) \cdot \#H^3(U, \mathcal{F})}$$

• $\chi_c(U, \mathcal{F}) = \frac{\#H^0_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}{\#H^1_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}$

For an open subscheme U of X,

 $\mathcal{F} \in Sh(U)$ constructible sheaf s.t. $\exists m \in \mathbb{Z}$ satisfying $m\mathcal{F} = 0$ and m invertible on U (i.e. $m\mathcal{O}_v = \mathcal{O}_v$ for all closed point $v \in U$), then $H^r(U, \mathcal{F})$ and $H^r_c(U, \mathcal{F})$ are finite, we define

•
$$\chi(U, \mathcal{F}) = \frac{\#H^0(U, \mathcal{F}) \cdot \#H^2(U, \mathcal{F})}{\#H^1(U, \mathcal{F}) \cdot \#H^3(U, \mathcal{F})}$$

• $\chi_c(U, \mathcal{F}) = \frac{\#H^0_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}{\#H^1_c(U, \mathcal{F}) \cdot \#H^2_c(U, \mathcal{F})}$

Formulae

Theorem

Let \mathcal{F} a constructible sheaf on U such that $m\mathcal{F}=0$ for a certain integer m invertible on U, then we have the formulae

• (i)
$$\chi(U,\mathcal{F}) = \prod_{v \in S_{\infty}} \frac{\#\mathcal{F}(K_v)}{\#\mathcal{H}^0(K_v,\mathcal{F}) \cdot |\#\mathcal{F}(K^s)|_v}$$

• (ii)
$$\chi_c(U,\mathcal{F}) = \prod_{v \in S_\infty} \#\mathcal{F}(K_v).$$

Sketch of proof.

• First, relate $\chi(U, \mathcal{F})$ with $\chi(V, \mathcal{F}|V)$

 Take a small V s.t. F is locally constant on V, identify H^r(V, F) with Galois cohomology, and apply the χ global formula for Galois cohomology.

Formulae

Theorem

Let \mathcal{F} a constructible sheaf on U such that $m\mathcal{F}=0$ for a certain integer m invertible on U, then we have the formulae

• (i)
$$\chi(U,\mathcal{F}) = \prod_{v \in S_{\infty}} \frac{\#\mathcal{F}(K_v)}{\#\mathcal{H}^0(K_v,\mathcal{F}) \cdot |\#\mathcal{F}(K^s)|_v}$$

• (ii)
$$\chi_c(U,\mathcal{F}) = \prod_{v \in S_\infty} \#\mathcal{F}(K_v).$$

Sketch of proof.

• First, relate $\chi(U, \mathcal{F})$ with $\chi(V, \mathcal{F}|V)$

 Take a small V s.t. F is locally constant on V, identify H^r(V, F) with Galois cohomology, and apply the χ global formula for Galois cohomology.

Formulae

Theorem

Let \mathcal{F} a constructible sheaf on U such that $m\mathcal{F}=0$ for a certain integer m invertible on U, then we have the formulae

• (i)
$$\chi(U,\mathcal{F}) = \prod_{v \in S_{\infty}} \frac{\#\mathcal{F}(K_v)}{\#\mathcal{H}^0(K_v,\mathcal{F}) \cdot |\#\mathcal{F}(K^s)|_v}$$

• (ii)
$$\chi_c(U,\mathcal{F}) = \prod_{v \in S_\infty} \#\mathcal{F}(K_v).$$

Sketch of proof.

- First, relate $\chi(U, \mathcal{F})$ with $\chi(V, \mathcal{F}|V)$
- Take a small V s.t. F is locally constant on V, identify H^r(V, F) with Galois cohomology, and apply the χ global formula for Galois cohomology.

< D > < P > < P > < P >

Artin-Verdier's theorem

Theorem (Artin-Verdier)

Let \mathcal{F} be a constructible sheaf on U, then we have the following perfect pairing of finite groups

$$\mathsf{Ext}^r_U(\mathcal{F},\mathbb{G}_m) imes \mathsf{H}^{3-r}_c(U,\mathcal{F}) o \mathsf{H}^3_c(U,\mathbb{G}_m)\simeq \mathbb{Q}/\mathbb{Z}.$$

Corollary

Let \mathcal{F} be a locally constant constructible sheaf on U such that $m\mathcal{F} = 0$ for a certain integer m invertible on U, then we have the following perfect pairing of finite groups (where $\mathcal{F}^D = \mathcal{H}om_U(\mathcal{F}, \mathbb{G}_m)$)

$$H^{r}(U,\mathcal{F}^{D}) imes H^{3-r}_{c}(U,\mathcal{F}) o H^{3}_{c}(U,\mathbb{G}_{m}) \simeq \mathbb{Q}/\mathbb{Z}.$$

Local duality Global cohomology Artin-Verdier's theorem

Sketch of proof of Artin-Verdier

Sketch of proof

• Proof the theorem with assumption $supp(\mathcal{F}) \subseteq Z \subsetneq X$;

- Show that we can replace U by a smaller V, then we can assume F to be locally constant, killed by m invertible on V;
- Show that we can replace (U, \mathcal{F}) by $(U', \mathcal{F}|U')$ with a finite étale covering $U' \rightarrow U$, then we can consider only the constant sheaves and assume that K is totally imaginary;

Local duality Global cohomology Artin-Verdier's theorem

Sketch of proof of Artin-Verdier

Sketch of proof

- Proof the theorem with assumption $supp(\mathcal{F}) \subseteq Z \subsetneq X$;
- Show that we can replace U by a smaller V, then we can assume \mathcal{F} to be locally constant, killed by m invertible on V;
- Show that we can replace (U, F) by (U', F|U') with a finite étale covering U' → U, then we can consider only the constant sheaves and assume that K is totally imaginary;
Local duality Global cohomology Artin-Verdier's theorem

Sketch of proof of Artin-Verdier

Sketch of proof

- Proof the theorem with assumption $supp(\mathcal{F}) \subseteq Z \subsetneq X$;
- Show that we can replace U by a smaller V, then we can assume F to be locally constant, killed by m invertible on V;
- Show that we can replace (U, \mathcal{F}) by $(U', \mathcal{F}|U')$ with a finite étale covering $U' \rightarrow U$, then we can consider only the constant sheaves and assume that K is totally imaginary;

- With the above assumptions, develop a machine for doing induction on *r*;
- Show that Ext_U^r and H_c^r vanish if r is large enough or small enough;
- Finally, complete the proof with a supplement argument of Artin-Schreier for the case char(K) = p.
- For the corollary, under the assumptions, we identify $Ext_U^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(U, \mathcal{F}^D)$ by spectral sequence.

- With the above assumptions, develop a machine for doing induction on *r*;
- Show that Ext_U^r and H_c^r vanish if r is large enough or small enough;
- Finally, complete the proof with a supplement argument of Artin-Schreier for the case char(K) = p.
- For the corollary, under the assumptions, we identify $Ext_U^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(U, \mathcal{F}^D)$ by spectral sequence.

- With the above assumptions, develop a machine for doing induction on *r*;
- Show that Ext_U^r and H_c^r vanish if r is large enough or small enough;
- Finally, complete the proof with a supplement argument of Artin-Schreier for the case char(K) = p.
- For the corollary, under the assumptions, we identify $Ext_U^r(\mathcal{F}, \mathbb{G}_m)$ and $H^r(U, \mathcal{F}^D)$ by spectral sequence.

- With the above assumptions, develop a machine for doing induction on *r*;
- Show that Ext_U^r and H_c^r vanish if r is large enough or small enough;
- Finally, complete the proof with a supplement argument of Artin-Schreier for the case char(K) = p.
- For the corollary, under the assumptions, we identify $Ext_{U}^{r}(\mathcal{F}, \mathbb{G}_{m})$ and $H^{r}(U, \mathcal{F}^{D})$ by spectral sequence.

Local duality Global cohomology Artin-Verdier's theorem

The End.

• Thank you very much !!

- Grazie mille !
- Merci beaucoup !

LIANG, Yong Qi

yongqi.liang@u-psud.fr

▶ < ∃ ▶</p>