
Outlines
Introduction

Some Arithmetic Duality Theorems

LIANG, Yong Qi

Université de Paris-Sud XI, Orsay France

ALGANT thesis defence
2008-07-08

Brussels, Belgium

LIANG, Yong Qi Some Arithmetic Duality Theorems



Outlines
Introduction

Part I: Galois cohomology
Part II: Etale cohomology

Outline of Part I

Galois cohomology
1 Local duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

2 An application to Abelian varieties

3 Global duality
A duality theorem
Poitou-Tate exact sequence
Euler-Poincaré characteristic

LIANG, Yong Qi Some Arithmetic Duality Theorems



Outlines
Introduction

Part I: Galois cohomology
Part II: Etale cohomology

Outline of Part I

Galois cohomology
1 Local duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

2 An application to Abelian varieties

3 Global duality
A duality theorem
Poitou-Tate exact sequence
Euler-Poincaré characteristic

LIANG, Yong Qi Some Arithmetic Duality Theorems



Outlines
Introduction

Part I: Galois cohomology
Part II: Etale cohomology

Outline of Part I

Galois cohomology
1 Local duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

2 An application to Abelian varieties

3 Global duality
A duality theorem
Poitou-Tate exact sequence
Euler-Poincaré characteristic

LIANG, Yong Qi Some Arithmetic Duality Theorems



Outlines
Introduction

Part I: Galois cohomology
Part II: Etale cohomology

Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology
Some notations and calculations
Euler-Poincaré characteristic

6 Artin-Verdier’s theorem

LIANG, Yong Qi Some Arithmetic Duality Theorems



Outlines
Introduction

Part I: Galois cohomology
Part II: Etale cohomology

Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology
Some notations and calculations
Euler-Poincaré characteristic

6 Artin-Verdier’s theorem

LIANG, Yong Qi Some Arithmetic Duality Theorems



Outlines
Introduction

Part I: Galois cohomology
Part II: Etale cohomology

Outline of Part II

Etale cohomology

4 Local duality

5 Global cohomology
Some notations and calculations
Euler-Poincaré characteristic

6 Artin-Verdier’s theorem

LIANG, Yong Qi Some Arithmetic Duality Theorems



Outlines
Introduction

A very brief introduction

Why arithmetic duality??
In mathematics, solving equations is always interesting.
e.g. rational points on a variety V (Q) =?
Why Galois / étale cohomology?

e.g. H1
ét(spec(OK ),Z/mZ)∗ = Cl(K )/mCl(K ) for K a

number field
e.g. H1(Qp,E )∗ = E (Qp) for E/Qp an elliptic curve

They give some certain obstructions of the local-global
principal for the problem of rational points.

A famous example : X(Q,E ) for an elliptic curve.

Tentative conclusion : the cohomology groups contain
important arithmetic information.
Arithmetic duality theorems may help to understand the
question of rational points.
Allons-y !
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Local duality
An application to Abelian varieties

Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Class formation

Definition
Let G be a profinite group, and C be a G -module (such that
C =

⋃
U6oG CU). We say that (G ,C ) is a class formation if there

exists an isomorphism invU : H2(U,C )
'→ Q/Z for each open

subgroup U 6o G with the commutative diagram for
V 6o U 6o G :

H2(U,C )
ResV ,U //

invU '
��

H2(V ,C )

invV '
��

Q/Z
[U:V ] // Q/Z

and H1(U,C ) = 0.
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Local duality
An application to Abelian varieties

Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Class formation

(G ,C ) = class formation, M = G -module natural pairing:

Extr
G (M,C )× H2−r (G ,M) → H2(G ,C ) ' Q/Z,

 

αr (G ,M) : Extr
G (M,C ) → H2−r (G ,M)∗ = Hom(H2−r (G ,M),Q/Z),

On the other hand, (G ,C ) the reciprocity map

rec : CG → G ab.
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Local duality
An application to Abelian varieties

Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Duality with respect to a class formation

Lemma
Let (G ,C ) be a class formation and M be a finite G-module, then

(i)αr (G ,M) is bijective for all r > 2;
(ii)α1(G ,M) is bijective if α1(U,Z/mZ) is bijective for all m
and all U 6o G ;

(iii)α0(G ,M) is surjective (resp. bijective) if α0(U,Z/mZ) is
surjective (resp. bijective) for all m and all U 6o G .
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Local duality
An application to Abelian varieties

Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Duality with respect to a class formation

Remark
P = a set of prime numbers
Considering only the P-primary part, a P-class formation will give
us a similar lemma.
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An application to Abelian varieties
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Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Notations

K = non-Archimedean local field
k = residue field, char(k) = p
G = Gal(K s/K )

(G ,K s∗) is a class formation by LCFT
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Local duality
An application to Abelian varieties

Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Local duality

Theorem
Let M be a finite G-module, then

αr (G ,M) : Extr
G (M,K s∗) → H2−r (G ,M)∗

is an isomorphism for all r . If char(K ) - #M, then Extr
G (M,K s∗)

and H r (G ,M) are finite.

Corollary

If char(K ) - #M, then there exists a perfect pairing of finite groups
(where MD = Hom(M,K s∗))

H r (G ,MD)× H2−r (G ,M) → H2(G ,K s∗) ' Q/Z.

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality
An application to Abelian varieties

Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

LCFT info. of rec : K ∗ → G ab,

α1(G ,Z/mZ) = rec(m) : K ∗/K ∗m → (G ab)(m),

commutative diagram

(G ab)m

µm(K )
α0(G ,Z/mZ)

//

recm

55kkkkkkkkkkkkkkkk
H2(G ,Z/mZ)∗,

ψ

OOOO
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Local duality
An application to Abelian varieties

Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).

In general, ψ: NOT a bijection, BUT in our case scd(G ) = 2
 H3(G ,Z) = 0 ψ: isomorphism,

info. of rec info. of
{
α0(G ,Z/mZ)
α1(G ,Z/mZ)

Apply the previous lemma ⇒ the statement,
spectral sequence

some simple calculations

}
 finiteness.

For the corollary, char(K ) - #M identify Extr
G (M,K s∗)

and H r (G ,MD) by spectral sequence.
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Global duality

Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Euler-Poincaré characteristic

We define the Euler-Poincaré characteristic
χ(G ,M) = #H0(G ,M)·#H2(G ,M)

#H1(G ,M)
, and we have the following formula

Theorem
For M finite of order m such that char(K ) - m, then

χ(G ,M) = |m|K .
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Local duality
An application to Abelian varieties

Global duality

Tate’s theorem

As an application of the local duality theorem, we get

Theorem (Tate)

Let K be a non-Archimedean local field of characteristic 0, and A
be an Abelian variety over K with dual At , then there exists a
perfect pairing

At(K )× H1(K ,A) → Q/Z.

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality
An application to Abelian varieties

Global duality

Sketch of proof

Sketch of proof.

We are going to study the Extr
K (−,Gm) sequence and

H r (K ,−) sequence of 0 → An → A n→ A → 0,
The local duality info. of αr (K ,An),

info. of αr (K ,An)
local χ formula

}
 info. of

{
αr (K ,A)n
αr (K ,A)(n)

Take the limit on n, get the info. on αr (K ,A) : iso.,
Finally, Barsotti-Weil formula : At(K ) = Ext1

K (A,Gm)
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Local duality
An application to Abelian varieties

Global duality

A duality theorem
Poitou-Tate exact sequence
Euler-Poincaré characteristic

Notations

K = a global field
S 6= ∅ a set of places containing all the archimedean places
KS = the maximal extension of K unramified outside S
GS = Gal(KS/K )

OF ,S = {x ∈ F ; w(x) > 0,∀w /∈ S}, S-integers
for K ⊆ F ⊆ KS with F/K finite (Galois) extension.
JF ,S =

∏′
w∈SF

F ∗
w , S-idèles

EF ,S = O×
F ,S = {x ∈ F ; w(x) = 0,∀w /∈ S}, S-units

CF ,S = JF ,S/EF ,S and CS = lim−→F
CF ,S

P = {p prime number; p∞ | #GS}
(GS ,CS) is a P-class formation by GCFT
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A duality theorem

Theorem
Let M be a finite GS -module, then for any prime number p ∈ P,

αr (GS ,M)(p) : Extr
GS

(M,CS)(p)
'→ H2−r (GS ,M)∗(p)

is an isomorphism for r > 1. Moreover, if K is a function field then
the statement is also true for r = 0, in which case P is all the prime
numbers.

Proof.
The proof: similar to the local case,
BUT in case K = number field, NOT necessary that scd(GS) = 2,
GCFT info. of rec ; info. of α0(GS ,Z/psZ),
that is why the statement is only for r > 1 in this case.
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Global duality

A duality theorem
Poitou-Tate exact sequence
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Notations

MD = Hom(M,K ∗
S )

Gv = Gal(K s
v /Kv )� gv = Gal(k(v)s/k(v))

H r (Kv ,M) =

{
H r

T (Gv ,M), v ∈ S∞
H r (Gv ,M), v non-Archimedean

.

H r
un(Kv ,M) = im(H r (gv ,M) → H r (Gv ,M)) for v /∈ S∞

P r
S(K ,M) =

∏′
v∈S H r (Kv ,M) restrict prod. wrt. H r

un(Kv ,M)

Lemma
The image of the homomorphism H r (GS ,M) →

∏
v∈S H r (Kv ,M)

is contained in P r
S(K ,M).

βr
S(K ,M) : H r (GS ,M) → P r

S(K ,M)

Xr
S(K ,M) = ker(βr

S(K ,M))
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Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite GS -module of order m satisfying mOK ,S = OK ,S ,
then

(i)The map β1
S(K ,M) is proper, in particular X1

S(K ,M) is
finite.
(ii)There exists a perfect pairing of finite groups

X1
S(K ,M)×X2

S(K ,MD) → Q/Z.

(iii)For r > 3, βr
S(K ,M) : H r (GS ,M)

'→
∏

v∈SR H r (Kv ,M) is
an isomorphism.
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Theorem (Poitou-Tate)

(iv)There is an exact sequence

0 // H0(GS ,M)
β0

S // P0
S(K ,M)

γ0
S // H2(GS ,MD)∗

��
H1(GS ,MD)∗

��

P1
S(K ,M)

γ1
Soo H1(GS ,M)

β1
Soo

H2(GS ,M)
β2

S // P2
S(K ,M)

γ2
S // H0(GS ,MD)∗ // 0.
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Local duality
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Global duality

A duality theorem
Poitou-Tate exact sequence
Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

(i)Properness of β1
S(K ,M): Spectral sequence reduction

to simple case,
Direct calculations for the simple case,
finiteness of class group ⇒ properness of β1

S(K ,M).

Poitou-Tate sequence ⇒(ii)perfect pairing of X.
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Global duality

A duality theorem
Poitou-Tate exact sequence
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Sketch of proof

Sketch of proof (continued).

(iii)&(iv): Local duality 
γr

S(K ,MD) : P r
S(K ,MD) → H2−r (GS ,M)∗ is the dual of

β2−r
S (K ,M) : H2−r (GS ,M) → P2−r

S (K ,M),

Symmetry ⇒ only need to proof the second half of the
sequence,
Extr

GS
(MD ,−), 0 → ES → JS → CS → 0 long exact

sequence,
Complicated calculations ⇒ Extr

GS
(MD ,ES) = H r (GS ,M) and

Extr
GS

(MD , JS) = P r
S(K ,M) for any r ,

Previous duality theorem ⇒ Extr
GS

(MD ,CS) = H r (GS ,MD)∗

for r > 1 (the last six terms of the Poitou-Tate sequence).
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GS
(MD ,ES) = H r (GS ,M) and

Extr
GS

(MD , JS) = P r
S(K ,M) for any r ,

Previous duality theorem ⇒ Extr
GS

(MD ,CS) = H r (GS ,MD)∗

for r > 1 (the last six terms of the Poitou-Tate sequence).
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Local duality
An application to Abelian varieties

Global duality

A duality theorem
Poitou-Tate exact sequence
Euler-Poincaré characteristic

Euler-Poincaré characteristic

If m = #M such that mOK ,S = OK ,S , and if S is finite, then
H r (GS ,M) is finite, we define

χ(GS ,M) =
#H0(GS ,M) ·#H2(GS ,M)

#H1(GS ,M)
,

we have the following formula

Theorem

χ(GS ,M) =
∏

v∈S∞

#H0(Gv ,M)

|m|v
.
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Local duality
Global cohomology

Artin-Verdier’s theorem

Part II

Etale cohomology
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Local duality
Global cohomology

Artin-Verdier’s theorem

Notations

From now on, all the cohomology groups = étale cohomology
groups, "sheaf" = étale sheaf of abelian groups
R : Henselian DVR, K = Frac(R), k = R/m residue field
X = spec(R) = {u, x} where

j : u = spec(K ) → X is the generic point
i : x = spec(k) → X is the closed point

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality
Global cohomology

Artin-Verdier’s theorem

Notations

From now on, all the cohomology groups = étale cohomology
groups, "sheaf" = étale sheaf of abelian groups
R : Henselian DVR, K = Frac(R), k = R/m residue field
X = spec(R) = {u, x} where

j : u = spec(K ) → X is the generic point
i : x = spec(k) → X is the closed point

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality
Global cohomology

Artin-Verdier’s theorem

Notations

From now on, all the cohomology groups = étale cohomology
groups, "sheaf" = étale sheaf of abelian groups
R : Henselian DVR, K = Frac(R), k = R/m residue field
X = spec(R) = {u, x} where

j : u = spec(K ) → X is the generic point
i : x = spec(k) → X is the closed point

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality
Global cohomology

Artin-Verdier’s theorem

The local duality theorem

Theorem
Suppose that k is a finite field. Let F be a constructible sheaf on
X , if one of the following conditions holds (1)K is complete,
(2)char(K ) = 0, (3)char(K ) = p and pF = F , then we have a
perfect pairing:

Extr
X (F ,Gm)× H3−r

x (X ,F) → H3
x (X ,Gm) ' Q/Z.

Corollary
Suppose that k is finite of characteristic p, for a locally constant
constructible sheaf F on X such that pF = F , then we have a
perfect pairing (where FD = HomX (F ,Gm))

H r (X ,FD)× H3−r
x (X ,F) → Q/Z.
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Local duality
Global cohomology

Artin-Verdier’s theorem

Proof of the theorem

Sketch of proof.
1 For sheaves of the form j!F , we identify the pairing with the

local duality of Galois cohomology,
2 For sheaves of the form i∗F , we identify the pairing with the

duality of the class formation (Gal(ks/k),Z),

3 Finally, for general F we take the cohomology sequence and
Ext sequence of

0 → j!j∗F → F → i∗i∗F → 0

and combine the first two cases.
4 For the corollary, pF = F identify Extr

X (F ,Gm) and
H r (X ,FD) by the local-global Ext spectral sequence.
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Local duality
Global cohomology

Artin-Verdier’s theorem

Some notations and calculations
Euler-Poincaré characteristic

Notations

K : a global field
X

X = spec(OK ) if K is a number field
X the unique complete smooth curve with function field K

Usually, for open subschemes V ⊂ U ⊆ X ,
j : V → U = the open immersion
i : U \ V = Z → U = the (reduced) closed immersion
For a closed point v of X , Oh

v = Henselization of the stalk of
OX at v , Kv = Frac(Oh

v )

For an Archimedean place v , we set Kv = R or C
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Local duality
Global cohomology

Artin-Verdier’s theorem

Some notations and calculations
Euler-Poincaré characteristic

Some calculations

We can compute H r (U,Gm), they are related to the ideal
class group (or Pic(U)) and the group of unites.
We can define H r

c (U,F) = "cohomology with compact
support"

in case K = function field, H r
c (U,F) ' H r (X , j!F) is the

cohomology with compact support in the classic sense;
if K = number field, H r

c (U,F) is NOT the classic one, but it
will give the perfect pairing in the future.

The important point : H r
c (U,F) is fixed into a long exact

sequence

· · · → H r
c (U,F) → H r (U,F) →

⊕
v /∈U

H r (Kv ,Fv ) → · · · .

Then we can also compute H r
c (U,Gm), H3

c (U,Gm) ' Q/Z.
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Euler-Poincaré characteristic

For an open subscheme U of X ,
F ∈ Sh(U) constructible sheaf s.t. ∃m ∈ Z satisfying mF = 0 and
m invertible on U (i.e. mOv = Ov for all closed point v ∈ U), then
H r (U,F) and H r

c (U,F) are finite, we define

χ(U,F) = #H0(U,F)·#H2(U,F)
#H1(U,F)·#H3(U,F)

χc(U,F) = #H0
c (U,F)·#H2

c (U,F)
#H1

c (U,F)·#H3
c (U,F)
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Local duality
Global cohomology

Artin-Verdier’s theorem

Some notations and calculations
Euler-Poincaré characteristic

Formulae

Theorem
Let F a constructible sheaf on U such that mF = 0 for a certain
integer m invertible on U, then we have the formulae

(i) χ(U,F) =
∏

v∈S∞
#F(Kv )

#H0(Kv ,F)·|#F(K s)|v ,

(ii) χc(U,F) =
∏

v∈S∞ #F(Kv ).

Sketch of proof.

First, relate χ(U,F) with χ(V ,F|V )

Take a small V s.t. F is locally constant on V , identify
H r (V ,F) with Galois cohomology, and apply the χ global
formula for Galois cohomology.
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Artin-Verdier’s theorem

Theorem (Artin-Verdier)

Let F be a constructible sheaf on U, then we have the following
perfect pairing of finite groups

Extr
U(F ,Gm)× H3−r

c (U,F) → H3
c (U,Gm) ' Q/Z.

Corollary
Let F be a locally constant constructible sheaf on U such that
mF = 0 for a certain integer m invertible on U, then we have the
following perfect pairing of finite groups
(where FD = HomU(F ,Gm))

H r (U,FD)× H3−r
c (U,F) → H3

c (U,Gm) ' Q/Z.
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Sketch of proof of Artin-Verdier

Sketch of proof

Proof the theorem with assumption supp(F) ⊆ Z ( X ;

Show that we can replace U by a smaller V , then we can
assume F to be locally constant, killed by m invertible on V ;

Show that we can replace (U,F) by (U ′,F|U ′) with a finite
étale covering U ′ → U, then we can consider only the constant
sheaves and assume that K is totally imaginary;
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Sketch of proof (continued)

Sketch of proof (continued).

With the above assumptions, develop a machine for doing
induction on r ;
Show that Extr

U and H r
c vanish if r is large enough or small

enough;
Finally, complete the proof with a supplement argument of
Artin-Schreier for the case char(K ) = p.
For the corollary, under the assumptions, we identify
Extr

U(F ,Gm) and H r (U,FD) by spectral sequence.
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The End.

Thank you very much !!
Grazie mille !
Merci beaucoup !

LIANG, Yong Qi
yongqi.liang@u-psud.fr

LIANG, Yong Qi Some Arithmetic Duality Theorems


	Outlines
	Part I: Galois cohomology
	Part II: Etale cohomology

	Introduction
	Galois cohomology
	Local duality
	Duality with respect to a class formation
	Local duality
	Euler-Poincaré characteristic

	An application to Abelian varieties
	Global duality
	A duality theorem
	Poitou-Tate exact sequence
	Euler-Poincaré characteristic


	Etale cohomology
	Local duality
	Global cohomology
	Some notations and calculations
	Euler-Poincaré characteristic

	Artin-Verdier's theorem


