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Introduction

A very brief introduction

Why arithmetic duality??

In mathematics, solving equations is always interesting.

e.g. rational points on a variety V(Q) =7
Why Galois / étale cohomology?

o e.g. Hi(spec(Ok),Z/mZ)* = CI(K)/mCI(K) for K a

number field

o eg. HY(Qp, E)* = E(Qp) for Eqg, an elliptic curve
They give some certain obstructions of the local-global
principal for the problem of rational points.

o A famous example : III(Q, E) for an elliptic curve.

Tentative conclusion : the cohomology groups contain
important arithmetic information.

Arithmetic duality theorems may help to understand the
question of rational points.

o Allons-y !
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Class formation

Definition

Let G be a profinite group, and C be a G-module (such that
C=Uu<.c CY). We say that (G, C) is a class formation if there
exists an isomorphism invy : H2(U, C) = Q/Z for each open
subgroup U <, G with the commutative diagram for

V<U<,G:
H2(U, C) — =Y 12y, €)
,-nvui: ,-nvvi:
vz—1 .z

and H(U, C) = 0.
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Class formation

e (G, C) = class formation, M = G-module ~ natural pairing:
Exti(M, C) x H*~"(G, M) — H?*(G, C) ~ Q/Z,
~

a’ (G, M) : Extz(M, C) — H?>~"(G, M)* = Hom(H>*~"(G, M),Q/7Z)
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Class formation

e (G, C) = class formation, M = G-module ~> natural pairing:
Exti(M, C) x H*7"(G, M) — H?*(G, C) ~ Q/Z,
>
a’ (G, M) : Extz(M, C) — H?>~"(G, M)* = Hom(H>*~"(G, M),Q/7Z)
@ On the other hand, (G, C) ~ the reciprocity map

rec: C¢ — G2,

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality Duality with respect to a class formation
Local duality

Euler-Poincaré characteristic

Duality with respect to a class formation

Lemma

Let (G, C) be a class formation and M be a finite G-module, then
e (i)a'(G, M) is bijective for all r > 2;
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Duality with respect to a class formation

Lemma

Let (G, C) be a class formation and M be a finite G-module, then
e (i)a"(G, M) is bijective for all r > 2;
o (ii)a(G, M) is bijective if a*(U,Z/mZ) is bijective for all m
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Local duality Duality with respect to a class formation
Local duality

Euler-Poincaré characteristic

Duality with respect to a class formation

Lemma

Let (G, C) be a class formation and M be a finite G-module, then
e (i)a"(G, M) is bijective for all r > 2;
o (ii)a(G, M) is bijective if a*(U,Z/mZ) is bijective for all m
and all U <, G;
o (iii)a®(G, M) is surjective (resp. bijective) if a°(U,Z/mZ) is
surjective (resp. bijective) for all m and all U <, G.
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Duality with respect to a class formation

P = a set of prime numbers
Considering only the P-primary part, a P-class formation will give
us a similar lemma.

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Notations

@ K = non-Archimedean local field

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Notations

@ K = non-Archimedean local field
@ k = residue field, char(k) = p

LIANG, Yong Qi Some Arithmetic Duality Theorems



Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Notations

@ K = non-Archimedean local field
@ k = residue field, char(k) = p
o G = Gal(K*/K)
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Notations

K = non-Archimedean local field

k = residue field, char(k) = p

G = Gal(K*/K)

(G, K**) is a class formation by LCFT
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Local duality

Let M be a finite G-module, then
a’(G, M) : Extz(M,K*) — H>"(G, M)*

is an isomorphism for all r. If char(K) { #M, then Ext;(M, K**)
and H"(G, M) are finite.

Corollary

| A

If char(K) t #M., then there exists a perfect pairing of finite groups
(where MP = Hom(M, K*))

H" (G, MP) x H*"(G, M) — H*(G, K**) ~ Q/Z.
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Sketch of proof

o LCFT ~ info. of rec : K* — G2,
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o LCFT ~> info. of rec : K* — G2,
o a(G,Z/mZ) = rec(m . K*/K*™ — (Gab)(m),
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Sketch of proof

Sketch of proof

o LCFT ~> info. of rec : K* — G2,
o a(G,Z/mZ) = rec(m . K*/K*™ — (Gab)(m),

@ commutative diagram

(Gab)m

/Tw

2 *
tm(K) A H*(G,Z/mZ)*,
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Sketch of proof

h of proof (continued).

@ In general, ¢: NOT a bijection, BUT in our case scd(G) = 2
~> H3(G,Z) = 0 ~ : isomorphism,
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@ In general, ¢: NOT a bijection, BUT in our case scd(G) = 2
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Sketch of proof (continued).
@ In general, ¢: NOT a bijection, BUT in our case scd(G) = 2
~> H3(G,Z) = 0 ~ : isomorphism,
a®(G,Z/mZ)
o (G,Z/mZ)

@ Apply the previous lemma = the statement,

@ info. of rec ~ info. of{
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Local duality Duality with respect to a class formation
Local duality
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Sketch of proof

Sketch of proof (continued).
@ In general, ¢: NOT a bijection, BUT in our case scd(G) = 2
~> H3(G,Z) = 0 ~ : isomorphism,
a®(G,Z/mZ)
o (G,Z/mZ)

@ Apply the previous lemma = the statement,

@ info. of rec ~ info. of{

spectral sequence

: : ~> finiteness.
some simple calculations
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).
@ In general, ¢: NOT a bijection, BUT in our case scd(G) = 2
~> H3(G,Z) = 0 ~ : isomorphism,
a®(G,Z/mZ)
o (G,Z/mZ)
Apply the previous lemma = the statement,

info. of rec ~> info. of {

spectral sequence
some simple calculations

@ For the corollary, char(K) { #M ~~ identify Extz(M, K**)
and H"(G, MP) by spectral sequence. O

} ~~> finiteness.
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Local duality Duality with respect to a class formation
Local duality
Euler-Poincaré characteristic

Euler-Poincaré characteristic

We define the Euler-Poincaré characteristic

x(G, M) = #Ho(i’l_'\l/’l)('zﬂ;\l;)(c”w), and we have the following formula

For M finite of order m such that char(K) { m, then

X(G, M) = |m|k.
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An application to Abelian varieties

Tate's theorem

As an application of the local duality theorem, we get

Theorem (Tate)

Let K be a non-Archimedean local field of characteristic 0, and A
be an Abelian variety over K with dual A%, then there exists a
perfect pairing

AY(K) x HY(K, A) — Q/Z.
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An application to Abelian varieties

Sketch of proof

Sketch of proof.

o We are going to study the Ext(—,G,) sequence and
H"(K,—) sequence of 0 — A, — A > A — 0,
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Sketch of proof.

o We are going to study the Ext(—,G,) sequence and
H"(K,—) sequence of 0 — A, — A > A — 0,
@ The local duality ~ info. of a"(K, A,),
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An application to Abelian varieties

Sketch of proof

Sketch of proof.

o We are going to study the Ext(—,G,) sequence and
H"(K,—) sequence of 0 — A, — A > A — 0,
@ The local duality ~ info. of a"(K, A,),
info. of o (K, Ap) : a"(K,A)n
~
local x formula } info. Of{ ar (K, A)M)
(K, A

r

o Take the limit on n, get the info. on a"(K, A) : iso.,
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An application to Abelian varieties

Sketch of proof

Sketch of proof.

o We are going to study the Ext(—,G,) sequence and
H"(K,—) sequence of 0 — A, — A > A — 0,
The local duality ~ info. of a"(K, Ap),

info. of a"(K, A,) }Winfo of{ a (K, A)n

K, A)
local x formula ar (K, A)M)

Take the limit on n, get the info. on a"(K, A) : iso.,
Finally, Barsotti-Weil formula : A*(K) = Ext}((A, Gm) ]
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic
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@ K = a global field
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@ K = a global field
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A duality theorem
Poitou-Tate exact sequence
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Notations

K = a global field

S # () a set of places containing all the archimedean places
Ks = the maximal extension of K unramified outside S

Gs = Gal(Ks/K)

Ofrs={x€ F,w(x) > 0,Vw ¢ S}, S-integers

for K C F C Ks with F/K finite (Galois) extension.

o Jrs=ITyes, Fu, S-idéles
° Ers=0fg={x€Fw(x)=0Yw¢ S}, S-units
o Crs=Jrs/EFs and Cs = Ii_rgl__ Crs
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Notations

K = a global field

S # () a set of places containing all the archimedean places
Ks = the maximal extension of K unramified outside S

Gs = Gal(Ks/K)

Ofrs={x€ F,w(x) > 0,Vw ¢ S}, S-integers

for K C F C Ks with F/K finite (Galois) extension.

o Jrs= HfmesF Fr, S-idéles

° Ers =Of g = {x € Fw(x) = 0,Yw ¢ S}, S-units
© Crs=Jrs/Ersand Cs =1lim_Crs

e P = {p prime number; p> | #Gs}
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Notations

K = a global field

S # () a set of places containing all the archimedean places
Ks = the maximal extension of K unramified outside S

Gs = Gal(Ks/K)

Ofrs={x€ F,w(x) > 0,Vw ¢ S}, S-integers

for K C F C Ks with F/K finite (Galois) extension.

Jrs = [Tes, Fu, S-idéles

Ers=0Of s ={x € Fyw(x) =0,Yw ¢ S}, S-units
Cr,s = Jrs/Ers and Cs = lim_ Cr s

P = {p prime number; p™ | #Gs}

(Gs, Cs) is a P-class formation by GCFT
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

A duality theorem

Theorem

Let M be a finite Gs-module, then for any prime number p € P,
o (G, M)(p) : Extlsy (M, Cs)(p) = H"(Gs, M)*(p)

is an isomorphism for r > 1. Moreover, if K is a function field then
the statement is also true for r = 0, in which case P is all the prime
numbers.

The proof: similar to the local case,

BUT in case K = number field, NOT necessary that scd(Gs) = 2,
GCFT ~> info. of rec # info. of a%(Gs,Z/p°7Z),

that is why the statement is only for r > 1 in this case. O
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A duality theorem
Poitou-Tate exact sequence
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Notations

o MP = Hom(M, K¥)
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Notations

o MP = Hom(M, K¥)
e G, = Gal(K;/K,) — g» = Gal(k(v)®/k(v))
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Notations

o MP = Hom(M, K¥)
e G, = Gal(K;/K,) — g» = Gal(k(v)®/k(v))
H-(Gy, M), v e S

o H'(K,,M) = { H'(G,, M), v non-Archimedean
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Notations

o MP = Hom(M, K¥)

o G, = Gal(K7/Ky) — gv = Gal(k(v)*/k(v))

H-(Gy, M), v e S

H"(G,, M), v non-Archimedean

o H/.(K,,M)=im(H (g,,M) — H"(G,,M)) for v ¢ S

o H'(K,, M) = {
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Notations

o MP = Hom(M, K¥)
G, = Gal(K:/K,) — g, = Gal(k(v)®/k(v))
, [ HY (G, M), veS,
H(Kv, M) = { H"(Gy, M), v non-Archimedean
H!(Ky, M) = im(H"(g,, M) — H"(G,, M)) for v ¢ S«
PL(K, M) =TT, cs H (Ky, M) restrict prod. wrt. H},(K,, M)

The image of the homomorphism H"(Gs, M) — [[,cs H (K., M)
is contained in PS(K, M).
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A duality theorem
Poitou-Tate exact sequence
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Notations

o MP = Hom(M, K¥)
G, = Gal(K:/K,) — g, = Gal(k(v)®/k(v))
, [ HY (G, M), veS,
H(Kv, M) = { H"(Gy, M), v non-Archimedean
H!(Ky, M) = im(H"(g,, M) — H"(G,, M)) for v ¢ S«
PL(K, M) =TT, cs H (Ky, M) restrict prod. wrt. H},(K,, M)

The image of the homomorphism H"(Gs, M) — [[,cs H (K., M)
is contained in PS(K, M).

o B¢(K,M): H"(Gs,M) — P&(K, M)
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Notations

o MP = Hom(M, K¥)
G, = Gal(K:/K,) — g, = Gal(k(v)®/k(v))
, [ HY (G, M), veS,
H(Kv, M) = { H"(Gy, M), v non-Archimedean
H!(Ky, M) = im(H"(g,, M) — H"(G,, M)) for v ¢ S«
PL(K, M) =TT, cs H (Ky, M) restrict prod. wrt. H},(K,, M)

The image of the homomorphism H"(Gs, M) — [[,cs H (K., M)
is contained in PS(K, M).

o B¢(K,M): H"(Gs,M) — P&(K, M)
o IIIG(K, M) = ker(B5(K, M))
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Poitou-Tate exact sequence

Theorem (Poit

Let M be a finite Gs-module of order m satisfying mOk s = Ok s,
then
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite Gs-module of order m satisfying mOk s = Ok s,
then

o (i)The map 35(K, M) is proper, in particular L5(K, M) is
finite.
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A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite Gs-module of order m satisfying mOk s = Ok s,
then

o (i)The map 35(K, M) is proper, in particular L5(K, M) is
finite.

o (ii) There exists a perfect pairing of finite groups

(K, M) x II1%(K, MP) — Q/Z.
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Poitou-Tate exact sequence

Theorem (Poitou-Tate)

Let M be a finite Gs-module of order m satisfying mOk s = Ok s,
then

o (i)The map 35(K, M) is proper, in particular L5(K, M) is
finite.

o (ii) There exists a perfect pairing of finite groups
MI5(K, M) x (K, MP) — Q/Z.

o (iii)For r >3, B5(K, M) : H"(Gs, M) = [1,csz H (Ky, M) is
an isomorphism.

LIANG, Yong Qi Some Arithmetic Duality Theorems



A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Poitou-Tate exact sequence

Theorem (Poitou-Tate)

@ (iv)There is an exact sequence

60 0
0——= HO(Gs, M) —= PY(K, M) —> H2(Gs, MP)"*

. .

HY(Gs, MP)* <=— PL(K, I\/I)<LH1(G5, M)

ny

ﬁ 2
H?(Gs, M) — P2(K, M) —% HO(Gs, MP)* —> 0
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Sketch of proof

Sketch of proof

o (i)Properness of BL(K, M): Spectral sequence ~ reduction
to simple case,
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Sketch of proof

Sketch of proof

o (i)Properness of BL(K, M): Spectral sequence ~ reduction
to simple case,

@ Direct calculations for the simple case,
finiteness of class group = properness of SL(K, M).
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Sketch of proof

Sketch of proof

o (i)Properness of BL(K, M): Spectral sequence ~ reduction
to simple case,

@ Direct calculations for the simple case,
finiteness of class group = properness of SL(K, M).

e Poitou-Tate sequence =-(ii)perfect pairing of III.

LIANG, Yong Qi Some Arithmetic Duality Theorems



A duality theorem
Poitou-Tate exact sequence
Global duality Euler-Poincaré characteristic

Sketch of proof

Sketch of proof (continued).
o (iii)&(iv): Local duality ~
_g(K MP) : PL(K, MP) — H>7"(Gs, M)* is the dual of
5 (K, M) : H*=(Gs, M) — P5~"(K, M),
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Sketch of proof

Sketch of proof (continued).
o (iii)&(iv): Local duality ~>
'3(’,( MP) Psz(K MP) — Hz_lgs, M)* is the dual of
(K, M) : H=="(Gs, M) — Ps~"(K, M),
° Symmetry = only need to proof the second half of the
sequence,
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Sketch of proof

Sketch of proof (continued).
o (iii)&(iv): Local duality ~>
_g(K MP) : PL(K, MP) — H>7"(Gs, M)* is the dual of
(K, M) H¥"(Gs, M) — P37 (K, M),

° Symmetry = only need to proof the second half of the
sequence,

° Ext&s(MD, —), 0 — Es — Js — Cs — 0 ~> long exact
sequence,
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Sketch of proof

Sketch of proof (continued).
o (iii)&(iv): Local duality ~>
'3(’,( MP) Psz(K MP) — Hz_lgs, M)* is the dual of
(K, M) : H=="(Gs, M) — Ps~"(K, M),
° Symmetry = only need to proof the second half of the
sequence,

° Ext&s(MD, —), 0 — Es — Js — Cs — 0 ~> long exact
sequence,

o Complicated calculations = Ex1.“£;S(MD7 Es) = H"(Gs, M) and
Ext&s(MD,Js) = P¢(K, M) for any r,
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Sketch of proof

Sketch of proof (continued).

o (iii)&(iv): Local duality ~
v5(K, MP) : PL(K,MP) — H2="(Gs, M)* is the dual of
5 (K, M) - H*~"(Gs, M) — PZ™"(K, M),

@ Symmetry = only need to proof the second half of the
sequence,

° Ext&s(MD, —), 0 — Es — Js — Cs — 0 ~> long exact
sequence,

o Complicated calculations = Ext&S(MD, Es) = H"(Gs, M) and
Ext&s(MD,Js) = P¢(K, M) for any r,

@ Previous duality theorem = Ext&S(MD, Cs) = H'(Gs, MP)*
for r > 1 (the last six terms of the Poitou-Tate sequence). [
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Euler-Poincaré characteristic

If m = #M such that mOy s = Ok s, and if S is finite, then
H"(Gs, M) is finite, we define

_ #H%(Gs, M) - #H?*(Gs, M)
X(GSaM) — #Hl(Gs,M) 5

we have the following formula
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Etale cohomology
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Local duality

Notations

@ From now on, all the cohomology groups = étale cohomology
groups, "sheaf" = étale sheaf of abelian groups
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Local duality

Notations

@ From now on, all the cohomology groups = étale cohomology
groups, "sheaf" = étale sheaf of abelian groups

@ R: Henselian DVR, K = Frac(R), k = R/m residue field
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Local duality

Notations

@ From now on, all the cohomology groups = étale cohomology
groups, "sheaf" = étale sheaf of abelian groups
@ R: Henselian DVR, K = Frac(R), k = R/m residue field
o X = spec(R) = {u, x} where
o j:u=spec(K)— X is the generic point
o i:x = spec(k) — X is the closed point
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Local duality

The local duality theorem

Theorem

Suppose that k is a finite field. Let F be a constructible sheaf on
X, if one of the following conditions holds (1)K is complete,
(2)char(K) = 0, (3)char(K) = p and pF = F, then we have a
perfect pairing:

Exti(F,Gm) x H3"(X,F) = H3(X,Gn) ~ Q/Z.

Corollary

Suppose that k is finite of characteristic p, for a locally constant
constructible sheaf F on X such that pF = F, then we have a
perfect pairing (where FP = Homx(F,G,))

H'(X,FP) x H3"(X, F) — Q/Z.
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Local duality

Proof of the theorem

Sketch of proof.

@ For sheaves of the form jiF, we identify the pairing with the
local duality of Galois cohomology,
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Local duality

Proof of the theorem

Sketch of proof.

@ For sheaves of the form jiF, we identify the pairing with the
local duality of Galois cohomology,

@ For sheaves of the form i, F, we identify the pairing with the
duality of the class formation (Gal(k®/k),Z),
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Local duality

Proof of the theorem

Sketch of proof.

@ For sheaves of the form jiF, we identify the pairing with the
local duality of Galois cohomology,

@ For sheaves of the form i, F, we identify the pairing with the
duality of the class formation (Gal(k®/k),Z),

© Finally, for general F we take the cohomology sequence and
Ext sequence of

0= jj F=F - iki*F -0

and combine the first two cases.
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Local duality

Proof of the theorem

Sketch of proof.

@ For sheaves of the form jiF, we identify the pairing with the
local duality of Galois cohomology,

@ For sheaves of the form i, F, we identify the pairing with the
duality of the class formation (Gal(k®/k),Z),

© Finally, for general F we take the cohomology sequence and
Ext sequence of

0= jj F=F - iki*F -0

and combine the first two cases.

@ For the corollary, pF = F ~> identify Ext{(F,G,) and
H"(X, FP) by the local-global Ext spectral sequence. O
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Some notations and calculations

Global cohomology Euler-Poincaré characteristic

Notations

e K: a global field
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Global cohomology Euler-Poincaré characteristic

Notations

e K: a global field
o X
o X = spec(Ok) if K is a number field
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Global cohomology Euler-Poincaré characteristic

Notations

e K: a global field
o X

o X = spec(Ok) if K is a number field
e X the unique complete smooth curve with function field K
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Global cohomology Euler-Poincaré characteristic

Notations

e K: a global field
o X
o X = spec(Ok) if K is a number field
e X the unique complete smooth curve with function field K
@ Usually, for open subschemes V C U C X,
Jj: V — U = the open immersion
i:U\V =Z2Z— U= the (reduced) closed immersion
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Notations

e K: a global field
o X
o X = spec(Ok) if K is a number field
e X the unique complete smooth curve with function field K
@ Usually, for open subschemes V C U C X,
Jj: V — U = the open immersion
i:U\V =Z2Z— U= the (reduced) closed immersion
e For a closed point v of X, O = Henselization of the stalk of
Ox at v, K, = Frac(Oh)
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Global cohomology Euler-Poincaré characteristic

Notations

e K: a global field
o X
o X = spec(Ok) if K is a number field
e X the unique complete smooth curve with function field K
@ Usually, for open subschemes V C U C X,
Jj: V — U = the open immersion
i:U\V =Z2Z— U= the (reduced) closed immersion
e For a closed point v of X, O = Henselization of the stalk of
Ox at v, K, = Frac(Oh)

@ For an Archimedean place v, we set K, =R or C
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Global cohomology Euler-Poincaré characteristic

Some calculations

e We can compute H"(U, G,), they are related to the ideal
class group (or Pic(U)) and the group of unites.
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Some calculations

e We can compute H"(U, G,), they are related to the ideal
class group (or Pic(U)) and the group of unites.

@ We can define H.(U, F) = "cohomology with compact
support"
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Some calculations

e We can compute H"(U, G,), they are related to the ideal
class group (or Pic(U)) and the group of unites.

@ We can define H.(U, F) = "cohomology with compact
support"
e in case K = function field, HL(U, F) ~ H"(X,iF) is the
cohomology with compact support in the classic sense;
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Some calculations

e We can compute H"(U, G,), they are related to the ideal
class group (or Pic(U)) and the group of unites.
@ We can define H.(U, F) = "cohomology with compact
support"
e in case K = function field, HL(U, F) ~ H"(X,iF) is the
cohomology with compact support in the classic sense;
o if K = number field, H.(U, F) is NOT the classic one, but it
will give the perfect pairing in the future.
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Some calculations

e We can compute H"(U, G,), they are related to the ideal
class group (or Pic(U)) and the group of unites.
@ We can define H.(U, F) = "cohomology with compact
support"
e in case K = function field, HL(U, F) ~ H"(X,iF) is the
cohomology with compact support in the classic sense;
o if K = number field, H.(U, F) is NOT the classic one, but it
will give the perfect pairing in the future.
@ The important point : HZ(U, F) is fixed into a long exact
sequence

o= HI(U, F) = H'(U,F) = P H (K, Fy) — -+ .
vgU
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Some notations and calculations

Global cohomology Euler-Poincaré characteristic

Some calculations

e We can compute H"(U, G,), they are related to the ideal
class group (or Pic(U)) and the group of unites.

@ We can define H.(U, F) = "cohomology with compact
support"
e in case K = function field, HL(U, F) ~ H"(X,iF) is the
cohomology with compact support in the classic sense;
o if K = number field, H.(U, F) is NOT the classic one, but it
will give the perfect pairing in the future.

@ The important point : HZ(U, F) is fixed into a long exact
sequence

s = HI(U,F) = H'(U,F) = @ H (K, F)) = - .
vgU

@ Then we can also compute H.(U,G,), H2(U,Gpn) ~ Q/Z.



Some notations and calculations

Global cohomology Euler-Poincaré characteristic

Euler-Poincaré characteristic

For an open subscheme U of X,

F € Sh(U) constructible sheaf s.t. I3m € Z satisfying mF = 0 and
m invertible on U (i.e. mO, = O, for all closed point v € U), then
H"(U,F) and HL(U,F) are finite, we define
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Euler-Poincaré characteristic

For an open subscheme U of X,

F € Sh(U) constructible sheaf s.t. I3m € Z satisfying mF = 0 and
m invertible on U (i.e. mO, = O, for all closed point v € U), then
H"(U,F) and HL(U,F) are finite, we define

_ #HO(U,F)#H*(U,F
o x(U,F) = #ngu,fg-#mgu,fg
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Euler-Poincaré characteristic

For an open subscheme U of X,

F € Sh(U) constructible sheaf s.t. I3m € Z satisfying mF = 0 and
m invertible on U (i.e. mO, = O, for all closed point v € U), then
H"(U,F) and HL(U,F) are finite, we define

_ #HO(U,F)#H?*(UF

o x(U,F)= #ngu,fg-#mgu,fg
_ #HY(UF)#H2(UF
° Xxc(U,F) = #Hgﬁu,f}#Hg§u,f§
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Formulae

Let F a constructible sheaf on U such that mF = 0 for a certain
integer m invertible on U, then we have the formulae

, F(K,
o () X(U.F) =Tles.. gmmmen #Fr:
o (i) Xe(U,F) = Lyes. #F(K,):

Sketch of proof.
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Some notations and calculations

Global cohomology Euler-Poincaré characteristic

Formulae

Let F a constructible sheaf on U such that mF = 0 for a certain
integer m invertible on U, then we have the formulae

, F(K,
o () X(U.F) =Tles.. gmmmen #Fr:
o (i) Xe(U,F) = Lyes. #F(K,):

Sketch of proof.

o First, relate x(U, F) with x(V, F|V)
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Formulae

Let F a constructible sheaf on U such that mF = 0 for a certain
integer m invertible on U, then we have the formulae

, F(K,
o () X(U.F) =Tles.. gmmmen #Fr:
o (i) Xe(U,F) = Lyes. #F(K,):

Sketch of proof.
o First, relate x(U, F) with x(V, F|V)
@ Take a small V s.t. F is locally constant on V| identify

H"(V,F) with Galois cohomology, and apply the yx global
formula for Galois cohomology. OJ
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Artin-Verdier's theorem

Theorem (Artin-Verdier)

Let F be a constructible sheaf on U, then we have the following
perfect pairing of finite groups

Extl)(F,Gm) x H3~"(U,F) — H3(U,G,) ~ Q/Z.

Corollary

Let F be a locally constant constructible sheaf on U such that
mJF = 0 for a certain integer m invertible on U, then we have the
following perfect pairing of finite groups

(where FP = Homy(F,Gn))

H (U, FP) x H3="(U, F) — H3(U,G,,) ~ Q/Z.
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Artin-Verdier's theorem

Sketch of proof of Artin-Verdier

Sketch of proof

@ Proof the theorem with assumption supp(F) C Z C X;
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Artin-Verdier's theorem

Sketch of proof of Artin-Verdier

Sketch of proof

@ Proof the theorem with assumption supp(F) C Z C X;

@ Show that we can replace U by a smaller V, then we can
assume F to be locally constant, killed by m invertible on V;
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Artin-Verdier's theorem

Sketch of proof of Artin-Verdier

Sketch of proof

@ Proof the theorem with assumption supp(F) C Z C X;

@ Show that we can replace U by a smaller V, then we can
assume F to be locally constant, killed by m invertible on V;

@ Show that we can replace (U, F) by (U, F|U’) with a finite
étale covering U’ — U, then we can consider only the constant
sheaves and assume that K is totally imaginary;
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Artin-Verdier's theorem

Sketch of proof (continued)

Sketch of proof (continued).

@ With the above assumptions, develop a machine for doing
induction on r;
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Artin-Verdier's theorem

Sketch of proof (continued)

Sketch of proof (continued).

@ With the above assumptions, develop a machine for doing
induction on r;

@ Show that Ext[; and H[ vanish if r is large enough or small
enough;
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Artin-Verdier's theorem

Sketch of proof (continued)

Sketch of proof (continued).
@ With the above assumptions, develop a machine for doing
induction on r;
@ Show that Ext[; and H[ vanish if r is large enough or small
enough;
@ Finally, complete the proof with a supplement argument of
Artin-Schreier for the case char(K) = p.
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Artin-Verdier's theorem

Sketch of proof (continued)

Sketch of proof (continued).

@ With the above assumptions, develop a machine for doing
induction on r;

@ Show that Ext[; and H[ vanish if r is large enough or small
enough;

@ Finally, complete the proof with a supplement argument of
Artin-Schreier for the case char(K) = p.

@ For the corollary, under the assumptions, we identify
Ext[,(F,Gp) and H" (U, FP) by spectral sequence. O
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Artin-Verdier's theorem

The End.

. Thank you very much !l

« Grazie mille !

» Merci beaucoup |

LIANG, Yong Qi
yongqi.liang@u-psud.fr

Ol
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