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Abstract. The aim of this work is to give an introduction to quaternion
algebra and Shimura curves. We start by giving some basic notions of
quaternion algebra. Then a definition of Shimura curve is shown. At last
the theorem of Kazhdan-Margulis is given without proof.

1. Quaternion Algebra

Definition 1.1. Let F be a field (char(F ) = 0) , a quaternion algebra over F
is a 4-dimensional F -algebra Ba,b = F ⊕Fi⊕Fj⊕Fk with the multiplication
defined by the relations : i2 = a, j2 = b, ij = k = −ji where a, b ∈ F ∗.

Definition 1.2. Ba,b is a quaternion F -algebra , the reduced norm is a map
n : Ba,b → F, x+yi+zj+wk 7→ x2−ay2−bz2+abw2,Then n(αβ) = n(α)n(β)
for every α, β ∈ B, and B×,1

a,b = {u ∈ B×
a,b|n(u) = 1} is a subgroup of B×

a,b.
The reduced trace is a map tr : Ba,b → F, x + yi + zj + wk 7→ 2x .

Remark 1.3. If α ∈ B, then α is a unit if and only if n(α) 6= 0, and α−1 =
ᾱ/n(α), where the conjugate ᾱ = x− yi− zj − wk if α = x + yi + zj + wk.

Remark 1.4.
(1)Ba,b is central simple F -algebra(i.e. B is a simple algebra and its center

is F ).
(2)Ba,b ' Baλ2,bµ2 for every λ, µ ∈ F ∗. Let Ba,b = F ⊕ Fi ⊕ Fj ⊕ Fk and

Baλ2,bµ2 = F ⊕ Fi′ ⊕ Fj′ ⊕ Fk′, if we set ϕ(i) = 1
λ i′ and ϕ(j) = 1

µj′, then ϕ

can be extend to an isomorphism from Ba,b to Baλ2,bµ2 .
(3)By Wedderburn’s Theorem (i.e. Every central simple algebra is of the

form Mn(D) for some n ∈ N with D a division algebra) B = Ba,b is isomorphic
to a 4-dimensional division algebra (said to be ramified) or M2(F ) (said to be
split) .

(4)If F = C, every element in C∗ is a square, hence Ba,b ' B1,1 by (2). One

can verify that ϕ(i) =
(

1
−1

)
, ϕ(j) =

(
1

1

)
extends to an isomor-

phism from B1,1 to M2(C).
(5)If F = R then every quaternion algebra is isomorphic to M2(R) or the

Hamiltonnian quaternion H = B−1,−1. By (2), there are only four types
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B1,1, B1,−1, B−1,1,H = B−1,−1 for B. Note that k2 = ijij = −iijj = −ab, by
the symmetry of i, j, k one obtains B1,1 ' B1,−1 ' B−1,1. One can verify that
ϕ given in (4) is an isomorphism from B1,1 to M2(R) with F = R.

(6)If F = Qp then the Hilbert symbol (to be discussed later, see definition1.5
and proposition1.7)

(a, b)p =
{

1 , if Ba,b ' M2(Qp),
−1 , if Ba,b is a division algebra.

(7)Let F be a number field , and B be a quaternion algebra over F , let

d(B) = {v|v is a prime (include ∞) of F such that Fv ⊗F B is ramified}
where Fv is the v-adic completion of F , we have the following properties:

(a)d(B) is a finite set with an even number of elements;(see theorem1.8
below for F = Q)

(b)B ' B′ if and only if d(B) = d(B′);
(c)If S is a set containing a finite even number of primes of F , then there

exists a quaternion algebra B over F such that S = d(B).

Definition 1.5. Let k be a field, define the Hilbert symbol (a, b) = 1 if 0 =
Z2 − aX2 − bY 2 has a nonzero solution over k, otherwise (a, b) = −1. In
particular, if k = Qp the Hilbert symbol will denoted by (a, b)p.

Lemma 1.6. If (a, b)p = −1, then n(x+yi+zj+wk) = x2−ay2−bz2+abw2 =
0 has no nonzero solution.

Proof. A proof using the theory of quadratic forms is given in [3, p.39] ¤

Proposition 1.7. The quaternion algebra B is a division algebra if and only
if (a, b) = −1.

Proof. First, B is a division algebra if and only if all the nonzeros are unit,
if and only if n(α) 6= 0 for all α 6= 0 by remark 1.3, in other words 0 =
x2 − ay2 − bz2 + abw2 has no nonzero solution. In this case, one can deduce
that 0 = x2−ay2−bz2 has no nonzero solution, hence (a, b) = −1. Conversely
if (a, b) = −1, then n(x + yi + zj + wk) = x2 − ay2 − bz2 + abw2 = 0 has no
nonzero solution by the lemma above, so B is a division algebra. ¤

Theorem 1.8 (Hilbert). Πp≤∞(a, b)p = 1.

Proof. A proof is given in [3, p.23]. ¤

Definition 1.9. Let F be the fraction field of an integral domain R and B be
a quaternion algebra over F , a R-lattice is a R-submodule L of B satisfying

(1)L is finitely generated as a R-module,
(2)L contains a F -basis of B.
A R-order of B is a R-lattice in B which is a subring of B with the same

identity.
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Definition 1.10. Let B be a quaternion algebra over F , R be the ring of
integers of F . An Eichler order O in B is the intersection of two maximal
R-orders in B. The level m of O is the index of O in any maximal order
containing it.

Definition 1.11. Let B be a quaternion algebra over F , we define the dis-
criminant of B disc(B) = Πp∈d(B)−{∞}p.

2. Shimura Curves

Definition 2.1. Let B be a quaternion algebra over Q of discriminant D such
that B⊗QR ' M2(R) , and let O be an Eichler order of level m in B, and set
ΓD

0 (m) = O×,1, then there exists a well-define action of B× on the upper half
plane H. We define the Shimura curve XD

0 (m) = ΓD
0 (m)\H.

Indeed, XD
0 (m) is a moduli space for Abelian varieties A of dimension 2

over C with an embedding i : B → End(A) ⊗ Q and some level structure
depending on m, one can find a description in [4, p.35].

Proposition 2.2. If B is a division algebra, then XD
0 is a compact Riemann

surface.

More generally, if GQ is a semi-simple algebraic group over Q and Γ ⊂
G(Q) is an arithmetic lattice(to be defined in the next lecture), then Γ\G(R)
is compact if and only if GQ is Q-anisotropic (i.e. G(Q) has no nontrivial
unipotent element— all its eigenvalue are 1 ).

Here G(Q) = B×,1. If α = x + yi + zj + wk ∈ B×,1 is a unipotent element,
then n(α) = x2 − ay2 − bz2 + abw2 = 1 and tr(α) = 2x = 2, we obtain
x = 1, w2 − a(y

a)2 − b( z
b )

2 = 0 in Q, hence (a, b)p = 1 for all prime p, then
d(B) = φ = d(M2(Q)), B×,1 ' SL2(Q) by remark1.4, which contradicts to the
fact that B is a division algebra. Similarly, one can prove that this proposition
holds for the quaternion algebra over a totally real field (to be defined later).

Let

A = R× Π̂pQp

= {(x, . . . , xp, . . .) ∈ R×ΠpQp| xp ∈ Zpfor all but finitely many p}
BA = B ⊗Q A ' M2(R)× Π̂p(B ⊗Q Qp)

ϕ∞ : B → B ⊗Q R ' M2(R)
ϕp : B → B ⊗Q Qp

ϕ = ϕ∞ ×Πpϕp : B → BA = B ⊗Q A ' M2(R)× Π̂p(B ⊗Q Qp);
x 7→ (x, . . . , x, . . .)

Let O be a Z-order of B, ϕ : O×,1 → B×,1 is injective, so one can view O×,1

as a subgroup of B×,1
A .

3



Proposition 2.3. (1)B× is a discrete subgroup of B×
A .

(2)B×,1\B×,1
A is compact, if B is a division algebra.

Proposition 2.2 can also be proof by using adelic language, see [5, p.104].
Let F be a totally real field with [F : Q] = d , and B be a quarternion algebra

over F satisfying : B ⊗F,ρ1 R ' M2(R) for the embedding ρ1 : F → R, and
B⊗F,ρiR ' H for all other embeddings ρi : F → R (2 ≤ i ≤ d), where H is the
Hammiltonnian quaternion over R. Then B ⊗Q R ' M2(R)×Hd−1, therefore
B× ⊗Q R ' GL2(R)× (H×)d−1, B×,1 ⊗Q R ' SL2(R)× (H×,1)d−1. Let O be
an order of B, then O×,1 can be viewed as a subgroup of SL2(R)× (H×,1)d−1.
Let π : SL2(R) × (H×,1)d−1 → SL2(R) be the canonical projection, then
π(O×,1) is a discrete subgroup of SL2(R)(see the proposition below), so O×,1

acts naturally on the upper half plane H, induced by the action of SL2(R)
on H (i.e. γ.z := π(γ).z, with γ ∈ O×,1, z ∈ H). We can also define a curve
X = O×,1\H, which is a compact Riemann surface(see proposition2.10 below).

Definition 2.4. Two subgroups H1 and H2 of G are said to be commensurable
if H1 ∩ H2 is of finite index in both H1 and H2. Commensurability is an
equivalent relation.

Let G be an algebraic group over Q, then one can view G as a subgroup of
GLn for some n ∈ N, set G(Z) = G(Q) ∩GLn(Z).

Definition 2.5. A subgroup Γ of G(Q) is said to be arithmetic if Γ and G(Z)
are commensurable.

Remark 2.6.
(1)The notion of commensurability does not depend on the imbedding i :

G ↪→ GLn, hence the definition makes sense.
(2)In particular, a subgroup Γ ⊆ SL2(Q) is arithmetic if Γ and SL2(Z) are

commensurable.

Definition 2.7. A lattice Γ in a linear algebraic reductive group H over R,
is said to be arithmetic if there exists a reductive group G over Q such that
G⊗QR ' H(R)×K(R) with a compact group KR, and a subgroup Γ′ of G(Q)
commensurable with G(Z) such that Γ = π(Γ′), where π : H ×K → H is the
canonical projection.

Remark 2.8. Let B be a quaternion algebra over F as above, B×,1 ⊗Q R '
SL2(R)×(H×,1)d−1, (H×,1)d−1 is compact, then Γ = π(O×,1) with Γ′ = O×,1 is
an arithmetic subgroup of SL2(R) for some order O in B. Non-isomorphic B’s
define different commensurability classes of arithmetic subgroups of SL2(R),
and all such classes arise in this way, so there are countably many classes of
arithmetic subgroups of SL2(R), and countably many such curves X = Γ\H.

Lemma 2.9. Let all the notations be as above, if B is a division algebra over
F , then Γ′ is a discrete subgroup of SL2(R) × (H×,1)d−1 and Γ′\SL2(R) ×
(H×,1)d−1 is compact.
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Proof. The proof makes use of adelic language, see [2]. ¤

Proposition 2.10. If B is a division algebra, then Γ = π(Γ′) is a discrete
subgroup of SL2(R) and Γ\H is compact.

Proof. H×,1 = {x+ yi+ zj +wk ∈ H|x2 + y2 + z2 +w2 = 1} ' SO3(R), which
is a compact group, hence (H×,1)d−1 is compact. Γ′ is a discrete subgroup
of SL2(R) × (H×,1)d−1 by the lemma above, so Γ′ ∩ (H×,1)d−1 is discrete in
(H×,1)d−1, hence Γ′ ∩ (H×,1)d−1 must be a finite set, thus Γ = π(Γ′) is also
a discrete subgroup of SL2(R). Γ′\SL2(R) × (H×,1)d−1 is compact by the
lemma above, so π(Γ′)\SL2 is also compact. We know that H ' SL2(R)/SO2.
Therefore, by definition, Γ\H = π(Γ′)\H ' π(Γ′)\SL2(R)/SO2 is compact.

¤

Remark 2.11. In the proof above the compactness of (H×,1)d−1 is essential.
We consider this example: F = Q(

√
2), B = B3,3 a quaternion division algebra

over F , but B ⊗ R ' M2(R) ×M2(R). D = Z ⊕ Z√2 is the ring of integers,
and O = D[1, i, j, k] is an order of B, π(O×,1) = SL2(D). However, SL2(D)
is not a discrete subgroup of GL2(R).

(
(
√

2− 1)n

(
√

2 + 1)n

)(
1 1

1

)(
(
√

2 + 1)n

(
√

2− 1)n

)

=
(

1 (
√

2− 1)2n

1

)
→

(
1

1

)
as n →∞.

Let GQ be a linear algebraic group over Q, let K∞ be a maximal compact
subgroup of G(R), then the symmetric space G(R)/K∞ ' H, let π : G(R) →
H be the canonical projection.

Definition 2.12. A lattice Γ in H is said to be arithmetic if there is a arith-
metic subgroup Γ′ of G(Q) such that Γ = π(Γ′).

Not every discrete subgroup of SL2(R) is arithmetic. It is a classical fact
that every compact Riemann surface of genus > 1 is isomorphic to Γ\H where
Γ is a discrete subgroup of Aut(H) = SL2(R). Since there are uncountably
many such Riemann surfaces, so there are uncountably many discrete sub-
groups of SL2(R), but only countably many ones are arithmetic.

Theorem 2.13 (Kazhdan-Margulis). Let Γ be a lattice in SL2(R). Then Γ
is arithmetic if and only if [comm(Γ) : Γ] = ∞, where

comm(Γ) =
{
x ∈ SL2(R)|Γ and xΓx−1are commensurable

}
.

Proof. This is a special case of a much more general result. A proof is given
in [6] . ¤

Remark 2.14. The condition [comm(Γ) : Γ] = ∞ means that there exists a
nontrivial Hecke operator on X = Γ\H.
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