QUATERNION ALGEBRA AND SHIMURA CURVES

YONG-QI LIANG

Abstract

The aim of this work is to give an introduction to quaternion algebra and Shimura curves. We start by giving some basic notions of quaternion algebra. Then a definition of Shimura curve is shown. At last the theorem of Kazhdan-Margulis is given without proof.

1. Quaternion Algebra

Definition 1.1. Let F be a field $(\operatorname{char}(F)=0)$, a quaternion algebra over F is a 4-dimensional F-algebra $B_{a, b}=F \oplus F i \oplus F j \oplus F k$ with the multiplication defined by the relations : $i^{2}=a, j^{2}=b, i j=k=-j i$ where $a, b \in F^{*}$.

Definition 1.2. $B_{a, b}$ is a quaternion F-algebra, the reduced norm is a map $n: B_{a, b} \rightarrow F, x+y i+z j+w k \mapsto x^{2}-a y^{2}-b z^{2}+a b w^{2}$, Then $n(\alpha \beta)=n(\alpha) n(\beta)$ for every $\alpha, \beta \in B$, and $B_{a, b}^{\times, 1}=\left\{u \in B_{a, b}^{\times} \mid n(u)=1\right\}$ is a subgroup of $B_{a, b}^{\times}$. The reduced trace is a map $t r: B_{a, b} \rightarrow F, x+y i+z j+w k \mapsto 2 x$.
Remark 1.3. If $\alpha \in B$, then α is a unit if and only if $n(\alpha) \neq 0$, and $\alpha^{-1}=$ $\bar{\alpha} / n(\alpha)$, where the conjugate $\bar{\alpha}=x-y i-z j-w k$ if $\alpha=x+y i+z j+w k$.

Remark 1.4.
(1) $B_{a, b}$ is central simple F-algebra(i.e. B is a simple algebra and its center is F).
(2) $B_{a, b} \simeq B_{a \lambda^{2}, b \mu^{2}}$ for every $\lambda, \mu \in F^{*}$. Let $B_{a, b}=F \oplus F i \oplus F j \oplus F k$ and $B_{a \lambda^{2}, b \mu^{2}}=F \oplus F i^{\prime} \oplus F j^{\prime} \oplus F k^{\prime}$, if we set $\varphi(i)=\frac{1}{\lambda} i^{\prime}$ and $\varphi(j)=\frac{1}{\mu} j^{\prime}$, then φ can be extend to an isomorphism from $B_{a, b}$ to $B_{a \lambda^{2}, b \mu^{2}}$.
(3)By Wedderburn's Theorem (i.e. Every central simple algebra is of the form $M_{n}(D)$ for some $n \in \mathbb{N}$ with D a division algebra) $B=B_{a, b}$ is isomorphic to a 4-dimensional division algebra (said to be ramified) or $M_{2}(F)$ (said to be split).
(4)If $F=\mathbb{C}$, every element in \mathbb{C}^{*} is a square, hence $B_{a, b} \simeq B_{1,1}$ by (2). One can verify that $\varphi(i)=\left(\begin{array}{ll}1 & \\ & -1\end{array}\right), \varphi(j)=\left(\begin{array}{ll} & 1 \\ 1 & \end{array}\right)$ extends to an isomorphism from $B_{1,1}$ to $M_{2}(\mathbb{C})$.
(5)If $F=\mathbb{R}$ then every quaternion algebra is isomorphic to $M_{2}(\mathbb{R})$ or the Hamiltonnian quaternion $\mathbb{H}=B_{-1,-1}$. By (2), there are only four types

[^0]$B_{1,1}, B_{1,-1}, B_{-1,1}, \mathbb{H}=B_{-1,-1}$ for B. Note that $k^{2}=i j i j=-i i j j=-a b$, by the symmetry of i, j, k one obtains $B_{1,1} \simeq B_{1,-1} \simeq B_{-1,1}$. One can verify that φ given in (4) is an isomorphism from $B_{1,1}$ to $M_{2}(\mathbb{R})$ with $F=\mathbb{R}$.
(6)If $F=\mathbb{Q}_{p}$ then the Hilbert symbol (to be discussed later, see definition1.5 and proposition1.7)
\[

(a, b)_{p}=\left\{$$
\begin{aligned}
1 & , \\
-1 & \text { if } B_{a, b} \simeq M_{2}\left(\mathbb{Q}_{p}\right) \\
, & \text { if } B_{a, b} \text { is a division algebra. }
\end{aligned}
$$\right.
\]

(7)Let F be a number field, and B be a quaternion algebra over F, let $d(B)=\left\{v \mid v\right.$ is a prime (include ∞) of F such that $F_{v} \otimes_{F} B$ is ramified $\}$ where F_{v} is the v-adic completion of F, we have the following properties:
(a) $d(B)$ is a finite set with an even number of elements;(see theorem1.8 below for $F=\mathbb{Q}$)
(b) $B \simeq B^{\prime}$ if and only if $d(B)=d\left(B^{\prime}\right)$;
(c)If S is a set containing a finite even number of primes of F, then there exists a quaternion algebra B over F such that $S=d(B)$.

Definition 1.5. Let k be a field, define the Hilbert symbol $(a, b)=1$ if $0=$ $Z^{2}-a X^{2}-b Y^{2}$ has a nonzero solution over k, otherwise $(a, b)=-1$. In particular, if $k=\mathbb{Q}_{p}$ the Hilbert symbol will denoted by $(a, b)_{p}$.
Lemma 1.6. If $(a, b)_{p}=-1$, then $n(x+y i+z j+w k)=x^{2}-a y^{2}-b z^{2}+a b w^{2}=$ 0 has no nonzero solution.

Proof. A proof using the theory of quadratic forms is given in [3, p.39]
Proposition 1.7. The quaternion algebra B is a division algebra if and only if $(a, b)=-1$.

Proof. First, B is a division algebra if and only if all the nonzeros are unit, if and only if $n(\alpha) \neq 0$ for all $\alpha \neq 0$ by remark 1.3 , in other words $0=$ $x^{2}-a y^{2}-b z^{2}+a b w^{2}$ has no nonzero solution. In this case, one can deduce that $0=x^{2}-a y^{2}-b z^{2}$ has no nonzero solution, hence $(a, b)=-1$. Conversely if $(a, b)=-1$, then $n(x+y i+z j+w k)=x^{2}-a y^{2}-b z^{2}+a b w^{2}=0$ has no nonzero solution by the lemma above, so B is a division algebra.

Theorem 1.8 (Hilbert). $\Pi_{p \leq \infty}(a, b)_{p}=1$.
Proof. A proof is given in [3, p.23].
Definition 1.9. Let F be the fraction field of an integral domain R and B be a quaternion algebra over F, a R-lattice is a R-submodule L of B satisfying
(1) L is finitely generated as a R-module,
(2) L contains a F-basis of B.

A R-order of B is a R-lattice in B which is a subring of B with the same identity.

Definition 1.10. Let B be a quaternion algebra over F, R be the ring of integers of F. An Eichler order \mathcal{O} in B is the intersection of two maximal R-orders in B. The level m of \mathcal{O} is the index of \mathcal{O} in any maximal order containing it.
Definition 1.11. Let B be a quaternion algebra over F, we define the discriminant of $B \operatorname{disc}(B)=\Pi_{p \in d(B)-\{\infty\}} p$.

2. Shimura Curves

Definition 2.1. Let B be a quaternion algebra over \mathbb{Q} of discriminant D such that $B \otimes_{\mathbb{Q}} \mathbb{R} \simeq M_{2}(\mathbb{R})$, and let \mathcal{O} be an Eichler order of level m in B, and set $\Gamma_{0}^{D}(m)=\mathcal{O}^{\times, 1}$, then there exists a well-define action of B^{\times}on the upper half plane \mathcal{H}. We define the Shimura curve $X_{0}^{D}(m)=\Gamma_{0}^{D}(m) \backslash \mathcal{H}$.

Indeed, $X_{0}^{D}(m)$ is a moduli space for Abelian varieties A of dimension 2 over \mathbb{C} with an embedding $i: B \rightarrow \operatorname{End}(A) \otimes \mathbb{Q}$ and some level structure depending on m, one can find a description in [4, p.35].
Proposition 2.2. If B is a division algebra, then X_{0}^{D} is a compact Riemann surface.

More generally, if $G_{\mathbb{Q}}$ is a semi-simple algebraic group over \mathbb{Q} and $\Gamma \subset$ $G(\mathbb{Q})$ is an arithmetic lattice(to be defined in the next lecture), then $\Gamma \backslash G(\mathbb{R})$ is compact if and only if $G_{\mathbb{Q}}$ is \mathbb{Q}-anisotropic (i.e. $G(\mathbb{Q})$ has no nontrivial unipotent element-all its eigenvalue are 1).

Here $G(\mathbb{Q})=B^{\times, 1}$. If $\alpha=x+y i+z j+w k \in B^{\times, 1}$ is a unipotent element, then $n(\alpha)=x^{2}-a y^{2}-b z^{2}+a b w^{2}=1$ and $\operatorname{tr}(\alpha)=2 x=2$, we obtain $x=1, w^{2}-a\left(\frac{y}{a}\right)^{2}-b\left(\frac{z}{b}\right)^{2}=0$ in \mathbb{Q}, hence $(a, b)_{p}=1$ for all prime p, then $d(B)=\phi=d\left(M_{2}(\mathbb{Q})\right), B^{\times, 1} \simeq S L_{2}(\mathbb{Q})$ by remark1.4, which contradicts to the fact that B is a division algebra. Similarly, one can prove that this proposition holds for the quaternion algebra over a totally real field (to be defined later).

Let

$$
\begin{aligned}
\mathbb{A} & =\mathbb{R} \times \widehat{\Pi}_{p} \mathbb{Q}_{p} \\
& =\left\{\left(x, \ldots, x_{p}, \ldots\right) \in \mathbb{R} \times \Pi_{p} \mathbb{Q}_{p} \mid x_{p} \in \mathbb{Z}_{p} \text { for all but finitely many } \mathrm{p}\right\} \\
B_{\mathbb{A}} & =B \otimes_{\mathbb{Q}} \mathbb{A} \simeq M_{2}(\mathbb{R}) \times \widehat{\Pi}_{p}\left(B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
\varphi_{\infty} & : B \rightarrow B \otimes_{\mathbb{Q}} \mathbb{R} \simeq M_{2}(\mathbb{R}) \\
\varphi_{p} & : B \rightarrow B \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \\
\varphi=\varphi_{\infty} \times \Pi_{p} \varphi_{p}: & B \rightarrow B_{\mathbb{A}}=B \otimes_{\mathbb{Q}} \mathbb{A} \simeq M_{2}(\mathbb{R}) \times \widehat{\Pi}_{p}\left(B \otimes_{\mathbb{Q}} \mathbb{Q}_{p}\right) \\
& x \mapsto(x, \ldots, x, \ldots)
\end{aligned}
$$

Let \mathcal{O} be a \mathbb{Z}-order of $B, \varphi: \mathcal{O}^{\times, 1} \rightarrow B^{\times, 1}$ is injective, so one can view $\mathcal{O}^{\times, 1}$ as a subgroup of $B_{\mathbb{A}}^{\times, 1}$.

Proposition 2.3. (1) B^{\times}is a discrete subgroup of $B_{\mathbb{A}}^{\times}$.
(2) $B^{\times, 1} \backslash B_{\mathbb{A}}^{\times, 1}$ is compact, if B is a division algebra.

Proposition 2.2 can also be proof by using adelic language, see [5, p.104].
Let F be a totally real field with $[F: \mathbb{Q}]=d$, and B be a quarternion algebra over F satisfying : $B \otimes_{F, \rho_{1}} \mathbb{R} \simeq M_{2}(\mathbb{R})$ for the embedding $\rho_{1}: F \rightarrow \mathbb{R}$, and $B \otimes_{F, \rho_{i}} \mathbb{R} \simeq \mathbb{H}$ for all other embeddings $\rho_{i}: F \rightarrow \mathbb{R}(2 \leq i \leq d)$, where \mathbb{H} is the Hammiltonnian quaternion over \mathbb{R}. Then $B \otimes_{\mathbb{Q}} \mathbb{R} \simeq M_{2}(\mathbb{R}) \times \mathbb{H}^{d-1}$, therefore $B^{\times} \otimes_{\mathbb{Q}} \mathbb{R} \simeq G L_{2}(R) \times\left(\mathbb{H}^{\times}\right)^{d-1}, B^{\times, 1} \otimes_{\mathbb{Q}} \mathbb{R} \simeq S L_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times, 1}\right)^{d-1}$. Let \mathcal{O} be an order of B, then $\mathcal{O}^{\times, 1}$ can be viewed as a subgroup of $S L_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times, 1}\right)^{d-1}$. Let $\pi: S L_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times, 1}\right)^{d-1} \rightarrow S L_{2}(\mathbb{R})$ be the canonical projection, then $\pi\left(\mathcal{O}^{\times, 1}\right)$ is a discrete subgroup of $S L_{2}(\mathbb{R})$ (see the proposition below), so $\mathcal{O}^{\times, 1}$ acts naturally on the upper half plane \mathcal{H}, induced by the action of $S L_{2}(\mathbb{R})$ on \mathcal{H} (i.e. $\gamma . z:=\pi(\gamma) . z$, with $\gamma \in \mathcal{O}^{\times, 1}, z \in \mathcal{H}$). We can also define a curve $X=\mathcal{O}^{\times, 1} \backslash \mathcal{H}$, which is a compact Riemann surface(see proposition 2.10 below).
Definition 2.4. Two subgroups H_{1} and H_{2} of G are said to be commensurable if $H_{1} \cap H_{2}$ is of finite index in both H_{1} and H_{2}. Commensurability is an equivalent relation.

Let G be an algebraic group over \mathbb{Q}, then one can view G as a subgroup of $G L_{n}$ for some $n \in \mathbb{N}$, set $G(\mathbb{Z})=G(\mathbb{Q}) \cap G L_{n}(\mathbb{Z})$.

Definition 2.5. A subgroup Γ of $G(\mathbb{Q})$ is said to be arithmetic if Γ and $G(\mathbb{Z})$ are commensurable.

Remark 2.6.

(1) The notion of commensurability does not depend on the imbedding i : $G \hookrightarrow G L_{n}$, hence the definition makes sense.
(2)In particular, a subgroup $\Gamma \subseteq S L_{2}(\mathbb{Q})$ is arithmetic if Γ and $S L_{2}(\mathbb{Z})$ are commensurable.

Definition 2.7. A lattice Γ in a linear algebraic reductive group H over \mathbb{R}, is said to be arithmetic if there exists a reductive group G over \mathbb{Q} such that $G \otimes_{\mathbb{Q}} \mathbb{R} \simeq H(\mathbb{R}) \times K(\mathbb{R})$ with a compact group $K_{\mathbb{R}}$, and a subgroup Γ^{\prime} of $G(\mathbb{Q})$ commensurable with $G(\mathbb{Z})$ such that $\Gamma=\pi\left(\Gamma^{\prime}\right)$, where $\pi: H \times K \rightarrow H$ is the canonical projection.

Remark 2.8. Let B be a quaternion algebra over F as above, $B^{\times, 1} \otimes_{\mathbb{Q}} \mathbb{R} \simeq$ $S L_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times, 1}\right)^{d-1},\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ is compact, then $\Gamma=\pi\left(\mathcal{O}^{\times, 1}\right)$ with $\Gamma^{\prime}=\mathcal{O}^{\times, 1}$ is an arithmetic subgroup of $S L_{2}(\mathbb{R})$ for some order \mathcal{O} in B. Non-isomorphic B 's define different commensurability classes of arithmetic subgroups of $S L_{2}(\mathbb{R})$, and all such classes arise in this way, so there are countably many classes of arithmetic subgroups of $S L_{2}(\mathbb{R})$, and countably many such curves $X=\Gamma \backslash \mathcal{H}$.
Lemma 2.9. Let all the notations be as above, if B is a division algebra over F, then Γ^{\prime} is a discrete subgroup of $S L_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ and $\Gamma^{\prime} \backslash S L_{2}(\mathbb{R}) \times$ $\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ is compact.

Proof. The proof makes use of adelic language, see [2].
Proposition 2.10. If B is a division algebra, then $\Gamma=\pi\left(\Gamma^{\prime}\right)$ is a discrete subgroup of $S L_{2}(\mathbb{R})$ and $\Gamma \backslash \mathcal{H}$ is compact.

Proof. $\mathbb{H}^{\times, 1}=\left\{x+y i+z j+w k \in \mathbb{H} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\} \simeq S O_{3}(\mathbb{R})$, which is a compact group, hence $\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ is compact. Γ^{\prime} is a discrete subgroup of $S L_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ by the lemma above, so $\Gamma^{\prime} \cap\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ is discrete in $\left(\mathbb{H}^{\times, 1}\right)^{d-1}$, hence $\Gamma^{\prime} \cap\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ must be a finite set, thus $\Gamma=\pi\left(\Gamma^{\prime}\right)$ is also a discrete subgroup of $S L_{2}(\mathbb{R})$. $\Gamma^{\prime} \backslash S L_{2}(\mathbb{R}) \times\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ is compact by the lemma above, so $\pi\left(\Gamma^{\prime}\right) \backslash S L_{2}$ is also compact. We know that $\mathcal{H} \simeq S L_{2}(\mathbb{R}) / S O_{2}$. Therefore, by definition, $\Gamma \backslash \mathcal{H}=\pi\left(\Gamma^{\prime}\right) \backslash \mathcal{H} \simeq \pi\left(\Gamma^{\prime}\right) \backslash S L_{2}(\mathbb{R}) / S O_{2}$ is compact.

Remark 2.11. In the proof above the compactness of $\left(\mathbb{H}^{\times, 1}\right)^{d-1}$ is essential. We consider this example: $F=\mathbb{Q}(\sqrt{2}), B=B_{3,3}$ a quaternion division algebra over F, but $B \otimes \mathbb{R} \simeq M_{2}(\mathbb{R}) \times M_{2}(\mathbb{R}) . \quad D=\mathbb{Z} \oplus \mathbb{Z} \sqrt{2}$ is the ring of integers, and $\mathcal{O}=D[1, i, j, k]$ is an order of $B, \pi\left(\mathcal{O}^{\times, 1}\right)=S L_{2}(D)$. However, $S L_{2}(D)$ is not a discrete subgroup of $G L_{2}(\mathbb{R})$.

$$
\begin{aligned}
& \left(\begin{array}{cc}
(\sqrt{2}-1)^{n} & \\
=\left(\begin{array}{cc}
1 & \left.(\sqrt{2}-1)^{2 n}+1\right)^{n}
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right)\left(\begin{array}{cc}
(\sqrt{2}+1)^{n} & \\
& 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right) \text { as } n \rightarrow \infty .
\end{array}\right. \\
& \\
& \\
& \\
&
\end{aligned}
$$

Let $G_{\mathbb{Q}}$ be a linear algebraic group over \mathbb{Q}, let K_{∞} be a maximal compact subgroup of $G(\mathbb{R})$, then the symmetric space $G(\mathbb{R}) / K_{\infty} \simeq \mathcal{H}$, let $\pi: G(\mathbb{R}) \rightarrow$ \mathcal{H} be the canonical projection.

Definition 2.12. A lattice Γ in \mathcal{H} is said to be arithmetic if there is a arithmetic subgroup Γ^{\prime} of $G(\mathbb{Q})$ such that $\Gamma=\pi\left(\Gamma^{\prime}\right)$.

Not every discrete subgroup of $S L_{2}(\mathbb{R})$ is arithmetic. It is a classical fact that every compact Riemann surface of genus >1 is isomorphic to $\Gamma \backslash \mathcal{H}$ where Γ is a discrete subgroup of $\operatorname{Aut}(\mathcal{H})=S L_{2}(\mathbb{R})$. Since there are uncountably many such Riemann surfaces, so there are uncountably many discrete subgroups of $S L_{2}(\mathbb{R})$, but only countably many ones are arithmetic.

Theorem 2.13 (Kazhdan-Margulis). Let Γ be a lattice in $S L_{2}(\mathbb{R})$. Then Γ is arithmetic if and only if $[\operatorname{comm}(\Gamma): \Gamma]=\infty$, where

$$
\operatorname{comm}(\Gamma)=\left\{x \in S L_{2}(\mathbb{R}) \mid \Gamma \text { and } x \Gamma x^{-1} \text { are commensurable }\right\} .
$$

Proof. This is a special case of a much more general result. A proof is given in [6].

Remark 2.14. The condition $[\operatorname{comm}(\Gamma): \Gamma]=\infty$ means that there exists a nontrivial Hecke operator on $X=\Gamma \backslash \mathcal{H}$.

References

[1] C.Maclachlan. Introduction to arithmetic Fuchsian groups.
[2] G.Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, 1971.
[3] J.-P.Serre. A Course in Arithmetic, volume 7 of Graduate Texts in Mathematics. SpringerVerlag, 1973.
[4] J.S.Milne. Canonical Models of Shimura Curves.
[5] M.-F.Vigneras. Arithmétique des Algèbres de Quaternions, volume 800 of Lecture Notes in Mathematics. Springer-Verlag, 1980.
[6] R.J.Zimmer. Ergodic Theory and Semisimple Groups. Birkh 1984.
[7] R.Kohel. Hecke module structure of quaternions.
Institute of Mathematics, Chinese Academy of Sciences
E-mail address: yongqi.liang@163.com

[^0]: Key words and phrases. quaternion algebra, Shimura curve.
 This work was completed with the help of Prof. Ullmo and Prof. Ouyang .

