
Local-global principle
Brauer-Manin obstruction

Local-global principle:
Rational points vs. Degree zero Chow groups

on rationally connected varieties

Yongqi LIANG

Université Paris Diderot - Paris 7, France

2017/04/10
Guangzhou

Yongqi LIANG Université Paris Diderot - Paris 7, France



Local-global principle
Brauer-Manin obstruction Number Theory & Algebraic Geometry

The rationals

Let Q be the set of rational numbers.
Q is endowed with a topology defined by the usual distance :
the absolute value ∀a, b ∈ Q, |a− b|∞
passing to the completion: we get R
Q ⊂ R dense
all Cauchy sequences converge in R, we can do analysis on R
Other (non trivial) topologies on Q ?
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p-adic numbers

p = a prime number
∀a ∈ Z define |a|p = p−vp(a) where n = vp(a) is an integer
such that pn|a but pn+1 - a
∀r = a

b ∈ Q define |r |p = | ab |p = p−(vp(a)−vp(b))

|r − s|p defines a distance function (triangle inequality), which
induces a topology on Q
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p-adic numbers

under the usual topology 75 is smaller than 324
Examples of p-adic topology:
p1 = 3 then |0|3 = 0, |75|3 = 1

3 , |324|3 = 1
81

under the 3-adic topology, 324 is much smaller than 75
however, for p2 = 5, |75|5 = 1

25 , |324|5 = 1
under the 5-adic topology, 75 is much smaller than 324
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p-adic numbers

Conclusion:
for different p we get inequivalent topologies on Q
none of these is equivalent to the usual topology induced by
Q ⊂ R

Theorem (Ostrowski)

These are all possible (inequivalent and non-trivial) distances on Q.
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p-adic numbers

passing to the completion with respect to | · |p, we get
Q ⊂ Qp dense
as in R, we can also do analysis on Qp

Qp — the field of p-adic numbers
k = a number field = a finite field extension of Q
v either a prime ideal of Ok — the ring of integers of k
k ⊂ kv the completion of k with respect to the v -adic
topology (kv is a finite extension of a certain Qp)
or an inclusion with dense image v : k ↪→ R or v : k ↪→ C
Q, k : global fields; R, C, Qp, kv local fields.
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Algebraic varieties

“Algebraic variety” = algebraic version of “manifold”
can be defined over any fields (not only over R or C)
Algebraic variety = (locally) defined by polynomials
examples:
a circle x2 + y2 = 1 is an algebraic variety over Q
a parabola y = x2 + 6x + 1 is an algebraic variety over Q
however, y = ex does not define an algebraic variety : exp(x)
is not a polynomial
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Algebraic varieties

X ⊂ Pn defined by finitely many (homogeneous) polynomials
∈ k[x0, . . . , xn], is call a projective algebraic variety over k
any compact Riemann surface is a projective algebraic curve
(variety of dimension 1) over C
X (k) = set of k-rational points = common solutions in k of
the polynomials defining X
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Rational points

the variety X defined over Q by x2 + y2 = −1
X (Q) = ∅, X (R) = ∅, but X (C) 6= ∅

Theorem (A. Wiles 1995: Fermat’s last theorem)

For n ≥ 3, define X by xn + yn = zn. If (x , y , z) ∈ X (Q) then
xyz = 0.

In general, for an algebraic variety X defined over a number
field k , to study the set X (k) of rational points is a very
important and very difficult question in number theory and in
arithmetic algebraic geometry.
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Local-global principle

An easy observation: If a polynomial has solutions in Q ⇒ it
has solutions in all extensions of Q, in particular in R and in all
Qp

for an algebraic variety X ,
X (Q) 6= ∅ ⇒ X (R) 6= ∅ and X (Qp) 6= ∅
it is relatively easy to decide if X (R) = ∅ : real analysis
also “easy” to decide if X (Qp) = ∅ : p-adic analysis
p-adic analysis on X ⇐⇒ the defining polynomials of X have
common integer solutions mod pn for all n ∈ N
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Local-global principle

k = a number field
similarly X (k) 6= ∅ ⇒ X (kv ) 6= ∅(∀v ∈ Ωk) and
X (k) ⊂

∏
v∈Ω X (kv )

Hasse principle: if the inverse is also true
X (kv ) 6= ∅ (∀v ∈ Ω)⇒ X (k) 6= ∅

Theorem (Hasse-Minkowski)

Let X be defined by a quadratic form with coefficients in k . Then
the Hasse principle is true.

Selmer: counter-example over Q, X : 3x3 + 4x3 + 5z3 = 0
X is a projective curve of genus 1
X (Q) = ∅ but X (Qp) 6= ∅ for all p and X (R) 6= ∅
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Local-global principle
Brauer-Manin obstruction Number Theory & Algebraic Geometry

Weak approximation

Weak approximation: if X (k) is dense in
∏

v∈Ω X (kv )

means there exist many many k-rational points
Example (Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987):
k = Q, Châtelet surface x2 + y2 = P(z), P(z) ∈ Q[z ]
irreducible of degree 4
weak approximation holds
Counter-example (Iskovskikh 1971):
x2 + y2 = −(z2 − 2)(z2 − 3)
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Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

A cohomological invariant

Different behaviours between X1 : x2 + y2 = P(z) (P
irreducible) and X2 : x2 + y2 = −(z2 − 2)(z2 − 3)

Why ?
a cohomological invariant Br(X ) = H2

ét(X ,Gm) Brauer group
of X
Br(X1)/Br(k) = 0 while Br(X2)/Br(k) = Z/2Z
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Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

Brauer-Manin pairing

Brauer-Manin pairing[∏
v∈Ω X (kv )

]
× Br(X )→ Q/Z

({xv}v∈Ω, β) 7→ 〈{xv}v , β〉 :=
∑
v∈Ω

invv (β(xv ))

local class field theory: invv : Br(kv ) ↪→ Q/Z[∏
v∈Ω X (kv )

]Br
= {{xv}v ; {xv}v⊥Br(X )} Brauer-Manin set

Fact. X (k) ⊆ X (k)⊆
[∏

v∈Ω X (kv )
]Br ⊆∏v∈Ω X (kv )

(by global class field theory)
X (k) : closure of X (k) in

∏
v X (kv ) (product topology)
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Manin’s idea
Rational points vs. Zero-cycles

Brauer-Manin obstruction

X (k) ⊆ X (k)⊆
[∏

v∈Ω X (kv )
]Br ⊆∏v∈Ω X (kv )

Obstruction: if
[∏

v∈Ω X (kv )
]Br

= ∅ then X (k) = ∅
(
∏

v X (kv ) can be non-empty) Hasse principle never happens

Obstruction: if
[∏

v∈Ω X (kv )
]Br (∏v∈Ω X (kv ), weak

approximation never happens
This explains the differences between the above example and
the counter-example

If
[∏

v∈Ω X (kv )
]Br 6= ∅ ⇒ X (k) 6= ∅, we say that

Brauer-Manin obstruction is the only obstruction to Hasse
principle
If =, we say that Brauer-Manin obstruction is the only
obstruction to weak approximation
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Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

Zero-cycles and Chow groups

the group of zero-cycles:
Z0(X ) =

⊕
P∈X Z · P = free Abelian group generated by

closed points on X

the -group of zero-cycles:
CH0(X ) = Z0(X )/ ∼ rational equivalence
rational equivalence : a zero-cycle can be obtained from the
other zero-cycle by a certain deformation
example: CH0(Pn) = Z
deg : Z0(X )→ Z, deg(

∑
P nPP) =

∑
nP [k(P) : k]

deg : CH0(X )→ Z is well-defined if X is a projective variety
a k-rational point on X is a zero-cycle of degree 1
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Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

Zero-cycles

(Colliot-Thélène) Similarly, Brauer-Manin pairing[∏
v∈Ω CH ′0(Xv )

]
× Br(X )→ Q/Z

The modified Chow group:

CH ′0(Xv ) =


CH0(Xv ), v is p-adic
CH0(Xv )/NC|RCH0(X v ), v is real
0, v is complex

complex CH0(X )→
∏

v∈Ω CH ′0(Xv )→ Hom(Br(X ),Q/Z)
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Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

Zero-cycles

M ̂:= lim←−n
M/nM for any abelian group M

A0(X ) := ker(CH0(X )
deg−→ Z)

complex (E )

[CH0(X )] →̂
[∏

v∈Ω CH ′0(Xv )
]
−̂→ Hom(Br(X ),Q/Z)

similarly, complex (E0)

[A0(X )] →̂
[∏

v∈Ω A0(Xv )
]
−̂→ Hom(Br(X ),Q/Z)

Question: Are they exact?

Remark (Wittenberg)

Exactness of (E ) =⇒
- Exactness of (E0)
- Existence of z ∈ CH0(X ) of degree 1 supposing the existence

of a family of degree 1 zero-cycles {zv}⊥Br(X ) (Brauer-Manin
obstruction is the only obstruction to Hasse principle for zero-cycles
of degree 1)
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Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

Examples and a conjecture

(Cassels-Tate) (E0) is exact if X = E is an elliptic curve (with
finiteness of X(E ) supposed).
(Kato-Saito) (E ) is exact if X = C is a smooth curve (with
finiteness of X(Jac(C )) supposed).

Conjecture (Colliot-Thélène–Sansuc, Kato–Saito)

The complex (E ) and (E0) are exact for all smooth projective
varieties.
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The complex (E ) and (E0) are exact for all smooth projective
varieties.
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Poonen’s 3-folds

fibration X → C

- base: C curve C (k) 6= ∅ finite and X(Jac(C )) <∞
- fibers: Châtelet surfaces

Poonen 2010: ∅ = X (k) ⊂
[∏

v∈Ω X (kv )
]Br 6= ∅

Colliot-Thélène 2010: ∃ global 0-cycles of degree 1 on X

Theorem (Liang)

The complex (E ) is exact for Poonen’s 3-folds.
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Rationally connectedness

Definition
X/k is called rationally connected,
if for any P,Q ∈ X (C), there exists a C-morphism f : P1

C → XC
such that f (0) = P and f (∞) = Q.

Example:
- A homogeneous space of a connected linear algebraic group
is rationally connected.
Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus > 0 is never rationally connected.
- Poonen’s 3-folds are not rationally connected.
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Relation between rational points and 0-cycles

Theorem (Liang)

Let X be a smooth (projective) rationally connected variety defined
over a number field k .

Assume that the Brauer-Manin obstruction is the only obstruction
to weak approximation for rational points on X ⊗k K , for any finite
extension K/k .

Then, the complex (E ) and (E0) are exact for X .
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An application

Recall : a result of Borovoi (1996).
G/k : connected linear algebraic group.
Y : homogeneous space of G with connected stabilizer (or
with abelian stabilizer if G is simply connected).
X : smooth compactification of Y .
Then the Brauer-Manin obstruction is the only obstruction to
weak approximation for rational points on X .

Corollary

The complex (E ), (E0) are exact for smooth compactifications of
any homogeneous space of any connected linear algebraic group
with connected stabilizer (or with abelian stabilizer if the group is
simply connected).
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(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational
points on XK , ∀K/k finite.
=⇒ (key: fibration method applied to X × P1 → P1)

- BM obstruction is the only obs. to “weak approx.” for
zero-cycles of degree 1 on XK , ∀K/k finite.
=⇒ (key: generalized Hilbertian subset)

- ∀d ∈ Z, BM obstruction is the only obs. to “weak approx.”
for zero-cycles of degree d on (X × P1)K , ∀K/k finite.
=⇒ (key: Theorem of Kollár-Szabó (X is RC) + an argument of Wittenberg)

- Exactness of (E ) for X × P1.

=⇒(key: homotopic invariance)

- Exactness of (E ) for X .

Yongqi LIANG Université Paris Diderot - Paris 7, France



Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational
points on XK , ∀K/k finite.
=⇒ (key: fibration method applied to X × P1 → P1)

- BM obstruction is the only obs. to “weak approx.” for
zero-cycles of degree 1 on XK , ∀K/k finite.
=⇒ (key: generalized Hilbertian subset)

- ∀d ∈ Z, BM obstruction is the only obs. to “weak approx.”
for zero-cycles of degree d on (X × P1)K , ∀K/k finite.
=⇒ (key: Theorem of Kollár-Szabó (X is RC) + an argument of Wittenberg)

- Exactness of (E ) for X × P1.

=⇒(key: homotopic invariance)

- Exactness of (E ) for X .

Yongqi LIANG Université Paris Diderot - Paris 7, France



Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational
points on XK , ∀K/k finite.
=⇒ (key: fibration method applied to X × P1 → P1)

- BM obstruction is the only obs. to “weak approx.” for
zero-cycles of degree 1 on XK , ∀K/k finite.
=⇒ (key: generalized Hilbertian subset)

- ∀d ∈ Z, BM obstruction is the only obs. to “weak approx.”
for zero-cycles of degree d on (X × P1)K , ∀K/k finite.
=⇒ (key: Theorem of Kollár-Szabó (X is RC) + an argument of Wittenberg)

- Exactness of (E ) for X × P1.

=⇒(key: homotopic invariance)

- Exactness of (E ) for X .

Yongqi LIANG Université Paris Diderot - Paris 7, France



Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational
points on XK , ∀K/k finite.
=⇒ (key: fibration method applied to X × P1 → P1)

- BM obstruction is the only obs. to “weak approx.” for
zero-cycles of degree 1 on XK , ∀K/k finite.
=⇒ (key: generalized Hilbertian subset)

- ∀d ∈ Z, BM obstruction is the only obs. to “weak approx.”
for zero-cycles of degree d on (X × P1)K , ∀K/k finite.
=⇒ (key: Theorem of Kollár-Szabó (X is RC) + an argument of Wittenberg)

- Exactness of (E ) for X × P1.

=⇒(key: homotopic invariance)

- Exactness of (E ) for X .

Yongqi LIANG Université Paris Diderot - Paris 7, France



Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational
points on XK , ∀K/k finite.
=⇒ (key: fibration method applied to X × P1 → P1)

- BM obstruction is the only obs. to “weak approx.” for
zero-cycles of degree 1 on XK , ∀K/k finite.
=⇒ (key: generalized Hilbertian subset)

- ∀d ∈ Z, BM obstruction is the only obs. to “weak approx.”
for zero-cycles of degree d on (X × P1)K , ∀K/k finite.
=⇒ (key: Theorem of Kollár-Szabó (X is RC) + an argument of Wittenberg)

- Exactness of (E ) for X × P1.

=⇒(key: homotopic invariance)

- Exactness of (E ) for X .

Yongqi LIANG Université Paris Diderot - Paris 7, France



Local-global principle
Brauer-Manin obstruction

Manin’s idea
Rational points vs. Zero-cycles

Thank you for your attention !

Yongqi LIANG
yongqi.liang@imj-prg.fr

http://www.imj-prg.fr/˜yongqi.liang/
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