Local－global principle：
 Rational points vs．Degree zero Chow groups on rationally connected varieties

Yongqi LIANG

梁 永祺
Université Paris Diderot－Paris 7，France

2017／04／10
Guangzhou

The rationals

- Let \mathbb{Q} be the set of rational numbers.
- \mathbb{Q} is endowed with a topology defined by the usual distance
- the absolute value $\forall a, b \in \mathbb{Q},|a-b|_{\infty}$
- passing to the completion: we get \mathbb{R}
- $\mathbb{Q} \subset \mathbb{R}$ dense
- all Cauchy sequences converge in \mathbb{R}, we can do analysis on \mathbb{R}
- Other (non trivial) topologies on \mathbb{Q} ?

The rationals

- Let \mathbb{Q} be the set of rational numbers.
- \mathbb{Q} is endowed with a topology defined by the usual distance :
- the absolute value $\forall a, b \in \mathbb{Q},|a-b|_{\infty}$
- passing to the completion: we get \mathbb{R}
- $\mathbb{Q} \subset \mathbb{R}$ dense
- all Cauchy sequences converge in \mathbb{R}, we can do analysis on \mathbb{R}
- Other (non trivial) topologies on \mathbb{Q} ?

The rationals

- Let \mathbb{Q} be the set of rational numbers.
- \mathbb{Q} is endowed with a topology defined by the usual distance :
- the absolute value $\forall a, b \in \mathbb{Q},|a-b|_{\infty}$
- passing to the completion: we get \mathbb{R}
- $\mathbb{Q} \subset \mathbb{R}$ dense
- all Cauchy sequences converge in \mathbb{R}, we can do analysis on \mathbb{R}
- Other (non trivial) topologies on \mathbb{Q} ?

The rationals

- Let \mathbb{Q} be the set of rational numbers.
- \mathbb{Q} is endowed with a topology defined by the usual distance :
- the absolute value $\forall a, b \in \mathbb{Q},|a-b|_{\infty}$
- passing to the completion: we get \mathbb{R}
- $\mathbb{Q} \subset \mathbb{R}$ dense
- all Cauchy sequences converge in \mathbb{R}, we can do analysis on \mathbb{R}
- Other (non trivial) topologies on \mathbb{Q} ?

The rationals

- Let \mathbb{Q} be the set of rational numbers.
- \mathbb{Q} is endowed with a topology defined by the usual distance :
- the absolute value $\forall a, b \in \mathbb{Q},|a-b|_{\infty}$
- passing to the completion: we get \mathbb{R}
- $\mathbb{Q} \subset \mathbb{R}$ dense
- all Cauchy sequences converge in \mathbb{R}, we can do analysis on \mathbb{R}
- Other (non trivial) topologies on \mathbb{Q} ?

p-adic numbers

- $p=$ a prime number
- $\forall a \in \mathbb{Z}$ define $|a|_{p}=p^{-v_{p}(a)}$ where $n=v_{p}(a)$ is an integer such that $p^{n} \mid a$ but $p^{n+1} \nmid a$
- $\forall r=\frac{a}{b} \in \mathbb{Q}$ define $|r|_{p}=\left|\frac{a}{b}\right|_{p}=p^{-\left(v_{p}(a)-v_{p}(b)\right)}$
- $|r-s|_{p}$ defines a distance function (triangle inequality), which induces a topology on \mathbb{Q}

p-adic numbers

- $p=$ a prime number
- $\forall a \in \mathbb{Z}$ define $|a|_{p}=p^{-v_{p}(a)}$ where $n=v_{p}(a)$ is an integer such that $p^{n} \mid a$ but $p^{n+1} \nmid a$
- $\forall r=\frac{a}{b} \in \mathbb{Q}$ define $|r|_{p}=\left|\frac{a}{b}\right|_{p}=p^{-\left(v_{p}(a)-v_{p}(b)\right)}$ - $|r-s|_{p}$ defines a distance function (triangle inequality), which induces a topology on \mathbb{Q}

p-adic numbers

- $p=$ a prime number
- $\forall a \in \mathbb{Z}$ define $|a|_{p}=p^{-v_{p}(a)}$ where $n=v_{p}(a)$ is an integer such that $p^{n} \mid a$ but $p^{n+1} \nmid a$
- $\forall r=\frac{a}{b} \in \mathbb{Q}$ define $|r|_{p}=\left|\frac{a}{b}\right|_{p}=p^{-\left(v_{p}(a)-v_{p}(b)\right)}$
- $|r-s|_{p}$ defines a distance function (triangle inequality), which induces a topology on \mathbb{Q}

p-adic numbers

- $p=$ a prime number
- $\forall a \in \mathbb{Z}$ define $|a|_{p}=p^{-v_{p}(a)}$ where $n=v_{p}(a)$ is an integer such that $p^{n} \mid a$ but $p^{n+1} \nmid a$
- $\forall r=\frac{a}{b} \in \mathbb{Q}$ define $|r|_{p}=\left|\frac{a}{b}\right|_{p}=p^{-\left(v_{p}(a)-v_{p}(b)\right)}$
- $|r-s|_{p}$ defines a distance function (triangle inequality), which induces a topology on \mathbb{Q}

p-adic numbers

- under the usual topology 75 is smaller than 324
- Examples of p-adic topology:
- $p_{1}=3$ then $|0|_{3}=0,|75|_{3}=\frac{1}{3},|324|_{3}=\frac{1}{81}$
- under the 3 -adic topology, 324 is much smaller than 75
- however, for $p_{2}=5,|75|_{5}=\frac{1}{25},|324|_{5}=1$
- under the 5-adic topology, 75 is much smaller than 324

p-adic numbers

- under the usual topology 75 is smaller than 324
- Examples of p-adic topology:
- $p_{1}=3$ then $|0|_{3}=0,|75|_{3}=\frac{1}{3},|324|_{3}=\frac{1}{81}$
- under the 3-adic topology, 324 is much smaller than 75
- however, for $p_{2}=5,|75|_{5}=\frac{1}{25},|324|_{5}=1$
- under the 5-adic topology, 75 is much smaller than 324

p-adic numbers

- under the usual topology 75 is smaller than 324
- Examples of p-adic topology:
- $p_{1}=3$ then $|0|_{3}=0,|75|_{3}=\frac{1}{3},|324|_{3}=\frac{1}{81}$
- under the 3-adic topology, 324 is much smaller than 75
- however, for $p_{2}=5,|75|_{5}=\frac{1}{25},|324|_{5}=1$
- under the 5-adic topology, 75 is much smaller than 324

p-adic numbers

- under the usual topology 75 is smaller than 324
- Examples of p-adic topology:
- $p_{1}=3$ then $|0|_{3}=0,|75|_{3}=\frac{1}{3},|324|_{3}=\frac{1}{81}$
- under the 3 -adic topology, 324 is much smaller than 75
- however, for $p_{2}=5,|75|_{5}=\frac{1}{25},|324|_{5}=1$
- under the 5-adic topology, 75 is much smaller than 324

p-adic numbers

- under the usual topology 75 is smaller than 324
- Examples of p-adic topology:
- $p_{1}=3$ then $|0|_{3}=0,|75|_{3}=\frac{1}{3},|324|_{3}=\frac{1}{81}$
- under the 3 -adic topology, 324 is much smaller than 75
- however, for $p_{2}=5,|75|_{5}=\frac{1}{25},|324|_{5}=1$
- under the 5-adic topology, 75 is much smaller than 324

p-adic numbers

- under the usual topology 75 is smaller than 324
- Examples of p-adic topology:
- $p_{1}=3$ then $|0|_{3}=0,|75|_{3}=\frac{1}{3},|324|_{3}=\frac{1}{81}$
- under the 3 -adic topology, 324 is much smaller than 75
- however, for $p_{2}=5,|75|_{5}=\frac{1}{25},|324|_{5}=1$
- under the 5-adic topology, 75 is much smaller than 324

p-adic numbers

- Conclusion:
- for different p we get inequivalent topologies on \mathbb{Q}
- none of these is equivalent to the usual topology induced by $\mathbb{Q} \subset \mathbb{R}$

Theorem (Ostrowski)

These are all possible (inequivalent and non-trivial) distances on \mathbb{Q}.

p-adic numbers

- Conclusion:
- for different p we get inequivalent topologies on \mathbb{Q}
- none of these is equivalent to the usual topology induced by $\mathbb{Q} \subset \mathbb{R}$

Theorem (Ostrowski)
 These are all possible (inequivalent and non-trivial) distances on \mathbb{Q}.

p-adic numbers

- Conclusion:
- for different p we get inequivalent topologies on \mathbb{Q}
- none of these is equivalent to the usual topology induced by $\mathbb{Q} \subset \mathbb{R}$

Theorem (Ostrowski)
 These are all possible (inequivalent and non-trivial) distances on \mathbb{Q}

p-adic numbers

- Conclusion:
- for different p we get inequivalent topologies on \mathbb{Q}
- none of these is equivalent to the usual topology induced by $\mathbb{Q} \subset \mathbb{R}$

Theorem (Ostrowski)

These are all possible (inequivalent and non-trivial) distances on \mathbb{Q}.

p-adic numbers

- passing to the completion with respect to $|\cdot|_{p}$, we get $\mathbb{Q} \subset \mathbb{Q}_{p}$ dense
- as in \mathbb{R}, we can also do analysis on \mathbb{Q}_{p}
- \mathbb{Q}_{p} - the field of p-adic numbers
- $k=$ a number field $=$ a finite field extension of \mathbb{Q}
- v either a prime ideal of \mathcal{O}_{k} - the ring of integers of k
- $k \subset k_{v}$ the completion of k with respect to the v-adic topology $\left(k_{v}\right.$ is a finite extension of a certain $\left.\mathbb{Q}_{n}\right)$
- or an inclusion with dense image $v: k \hookrightarrow \mathbb{R}$ or $v: k \hookrightarrow \mathbb{C}$
- \mathbb{Q}, k : global fields; $\mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}, k_{v}$ local fields.

p-adic numbers

- passing to the completion with respect to $|\cdot|_{p}$, we get $\mathbb{Q} \subset \mathbb{Q}_{p}$ dense
- as in \mathbb{R}, we can also do analysis on \mathbb{Q}_{p}
- \mathbb{Q}_{p} - the field of p-adic numbers
- $k=$ a number field $=$ a finite field extension of \mathbb{Q}
- v either a prime ideal of \mathcal{O}_{k} - the ring of integers of k
- $k \subset k_{v}$ the completion of k with respect to the v-adic topology (k_{v} is a finite extension of a certain \mathbb{Q}_{p})
- or an inclusion with dense image $v: k \hookrightarrow \mathbb{R}$ or $v: k \hookrightarrow \mathbb{C}$
- \mathbb{Q}, k : global fields; $\mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}, k_{v}$ local fields

p-adic numbers

- passing to the completion with respect to $|\cdot|_{p}$, we get $\mathbb{Q} \subset \mathbb{Q}_{p}$ dense
- as in \mathbb{R}, we can also do analysis on \mathbb{Q}_{p}
- \mathbb{Q}_{p} - the field of p-adic numbers
- $k=$ a number field $=$ a finite field extension of \mathbb{Q}
- v either a prime ideal of \mathcal{O}_{k} - the ring of integers of k
- $k \subset k_{v}$ the completion of k with respect to the v-adic topology (k_{v} is a finite extension of a certain \mathbb{Q}_{p})
- or an inclusion with dense image $v: k \hookrightarrow \mathbb{R}$ or $v: k \hookrightarrow \mathbb{C}$
- \mathbb{Q}, k : global fields; $\mathbb{R}, \mathbb{C}, \mathbb{Q}_{n}, k_{v}$ local fields

p-adic numbers

- passing to the completion with respect to $|\cdot|_{p}$, we get $\mathbb{Q} \subset \mathbb{Q}_{p}$ dense
- as in \mathbb{R}, we can also do analysis on \mathbb{Q}_{p}
- \mathbb{Q}_{p} - the field of p-adic numbers
- $k=$ a number field $=$ a finite field extension of \mathbb{Q}
- v either a prime ideal of \mathcal{O}_{k} - the ring of integers of k
- $k \subset k_{v}$ the completion of k with respect to the v-adic topology (k_{v} is a finite extension of a certain \mathbb{Q}_{p})
- or an inclusion with dense image $v: k \hookrightarrow \mathbb{R}$ or $v: k \hookrightarrow \mathbb{C}$
- \mathbb{Q}, k : global fields; $\mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}, k_{v}$ local fields

p-adic numbers

- passing to the completion with respect to $|\cdot|_{p}$, we get $\mathbb{Q} \subset \mathbb{Q}_{p}$ dense
- as in \mathbb{R}, we can also do analysis on \mathbb{Q}_{p}
- \mathbb{Q}_{p} - the field of p-adic numbers
- $k=$ a number field $=$ a finite field extension of \mathbb{Q}
- v either a prime ideal of \mathcal{O}_{k} - the ring of integers of k
- $k \subset k_{v}$ the completion of k with respect to the v-adic topology (k_{v} is a finite extension of a certain \mathbb{Q}_{p})
- or an inclusion with dense image v
- \mathbb{Q}, k : global fields; $\mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}, k_{v}$ local fields

p-adic numbers

- passing to the completion with respect to $|\cdot|_{p}$, we get $\mathbb{Q} \subset \mathbb{Q}_{p}$ dense
- as in \mathbb{R}, we can also do analysis on \mathbb{Q}_{p}
- \mathbb{Q}_{p} - the field of p-adic numbers
- $k=$ a number field $=$ a finite field extension of \mathbb{Q}
- v either a prime ideal of \mathcal{O}_{k} - the ring of integers of k
- $k \subset k_{v}$ the completion of k with respect to the v-adic topology (k_{v} is a finite extension of a certain \mathbb{Q}_{p})
- or an inclusion with dense image $v: k \hookrightarrow \mathbb{R}$ or $v: k \hookrightarrow \mathbb{C}$

p-adic numbers

- passing to the completion with respect to $|\cdot|_{p}$, we get $\mathbb{Q} \subset \mathbb{Q}_{p}$ dense
- as in \mathbb{R}, we can also do analysis on \mathbb{Q}_{p}
- \mathbb{Q}_{p} - the field of p-adic numbers
- $k=$ a number field $=$ a finite field extension of \mathbb{Q}
- v either a prime ideal of \mathcal{O}_{k} - the ring of integers of k
- $k \subset k_{v}$ the completion of k with respect to the v-adic topology (k_{v} is a finite extension of a certain \mathbb{Q}_{p})
- or an inclusion with dense image $v: k \hookrightarrow \mathbb{R}$ or $v: k \hookrightarrow \mathbb{C}$
- \mathbb{Q}, k : global fields; $\mathbb{R}, \mathbb{C}, \mathbb{Q}_{p}, k_{v}$ local fields.

Algebraic varieties

- "Algebraic variety" = algebraic version of "manifold"
- can be defined over any fields (not only over \mathbb{R} or \mathbb{C})
- Algebraic variety $=$ (locally) defined by polynomials
- examples:
- a circle $x^{2}+y^{2}=1$ is an algebraic variety over \mathbb{Q}
- a parabola $y=x^{2}+6 x+1$ is an algebraic variety over \mathbb{Q}
- however, $y=e^{x}$ does not define an algebraic variety : $\exp (x)$ is not a polynomial

Algebraic varieties

- "Algebraic variety" = algebraic version of "manifold"
- can be defined over any fields (not only over \mathbb{R} or \mathbb{C})
- Algebraic variety $=$ (locally) defined by polynomials
- examples
o a circle $x^{2}+y^{2}=1$ is an algebraic variety over Q
- a parabola $y=x^{2}+6 x+1$ is an algebraic variety over \mathbb{Q}
- however, $y=e^{x}$ does not define an algebraic variety : exp (x) is not a polynomial

Algebraic varieties

- "Algebraic variety" = algebraic version of "manifold"
- can be defined over any fields (not only over \mathbb{R} or \mathbb{C})
- Algebraic variety $=$ (locally) defined by polynomials
- examples:
- a circle $x^{2}+y^{2}=1$ is an algebraic variety over \mathbb{Q}
- a parabola $y=x^{2}+6 x+1$ is an algebraic variety over \mathbb{Q}
- however, $y=e^{x}$ does not define an algebraic variety : $\exp (x)$ is not a polynomial

Algebraic varieties

- "Algebraic variety" = algebraic version of "manifold"
- can be defined over any fields (not only over \mathbb{R} or \mathbb{C})
- Algebraic variety $=$ (locally) defined by polynomials
- examples:
- a circle $x^{2}+y^{2}=1$ is an algebraic variety over \mathbb{Q}
- a parabola $y=x^{2}+6 x+1$ is an algebraic variety over \mathbb{Q}
- however, $y=e^{x}$ does not define an algebraic variety : $\exp (x)$ is not a polynomial

Algebraic varieties

- "Algebraic variety" = algebraic version of "manifold"
- can be defined over any fields (not only over \mathbb{R} or \mathbb{C})
- Algebraic variety $=$ (locally) defined by polynomials
- examples:
- a circle $x^{2}+y^{2}=1$ is an algebraic variety over \mathbb{Q}
- a parabola $y=x^{2}+6 x+1$ is an algebraic variety over \mathbb{Q}
- however, $y=e^{x}$ does not define an algebraic variety : $\exp (x)$ is not a polynomial

Algebraic varieties

- "Algebraic variety" = algebraic version of "manifold"
- can be defined over any fields (not only over \mathbb{R} or \mathbb{C})
- Algebraic variety $=$ (locally) defined by polynomials
- examples:
- a circle $x^{2}+y^{2}=1$ is an algebraic variety over \mathbb{Q}
- a parabola $y=x^{2}+6 x+1$ is an algebraic variety over \mathbb{Q}
- however, $y=e^{x}$ does not define an algebraic variety

Algebraic varieties

- "Algebraic variety" = algebraic version of "manifold"
- can be defined over any fields (not only over \mathbb{R} or \mathbb{C})
- Algebraic variety $=$ (locally) defined by polynomials
- examples:
- a circle $x^{2}+y^{2}=1$ is an algebraic variety over \mathbb{Q}
- a parabola $y=x^{2}+6 x+1$ is an algebraic variety over \mathbb{Q}
- however, $y=e^{x}$ does not define an algebraic variety : $\exp (x)$ is not a polynomial

Algebraic varieties

- $X \subset \mathbb{P}^{n}$ defined by finitely many (homogeneous) polynomials $\in k\left[x_{0}, \ldots, x_{n}\right]$, is call a projective algebraic variety over k
- any compact Riemann surface is a projective algebraic curve (variety of dimension 1) over \mathbb{C}
- $X(k)=$ set of k-rational points $=$ common solutions in k of the polynomials defining X

Algebraic varieties

- $X \subset \mathbb{P}^{n}$ defined by finitely many (homogeneous) polynomials $\in k\left[x_{0}, \ldots, x_{n}\right]$, is call a projective algebraic variety over k
- any compact Riemann surface is a projective algebraic curve (variety of dimension 1) over \mathbb{C}
- $X(k)=$ set of k-rational points $=$ common solutions in k of the polynomials defining X

Algebraic varieties

- $X \subset \mathbb{P}^{n}$ defined by finitely many (homogeneous) polynomials $\in k\left[x_{0}, \ldots, x_{n}\right]$, is call a projective algebraic variety over k
- any compact Riemann surface is a projective algebraic curve (variety of dimension 1) over \mathbb{C}
- $X(k)=$ set of k-rational points $=$ common solutions in k of the polynomials defining X

Rational points

- the variety X defined over \mathbb{Q} by $x^{2}+y^{2}=-1$
- $X(\mathbb{Q})=\emptyset, X(\mathbb{R})=\emptyset$, but $X(\mathbb{C}) \neq \emptyset$

```
Theorem (A. Wiles 1995: Fermat's last theorem)
For n>3, define X by }\mp@subsup{x}{}{n}+\mp@subsup{y}{}{n}=\mp@subsup{z}{}{n}\mathrm{ . If }(x,y,z)\inX(Q)\mathrm{ then
xyz = 0.
```

- In general, for an algebraic variety X defined over a number field k, to study the set $X(k)$ of rational points is a very important and very difficult question in number theory and in arithmetic algebraic geometry.

Rational points

- the variety X defined over \mathbb{Q} by $x^{2}+y^{2}=-1$
- $X(\mathbb{Q})=\emptyset, X(\mathbb{R})=\emptyset$, but $X(\mathbb{C}) \neq \emptyset$
Theorem (A. Wiles 1995: Fermat's last theorem)
For $n \geq 3$, define X by $x^{n}+y^{n}=z^{n}$. If $(x, y, z) \in X(\mathbb{Q})$ then$x y z=0$.
- In general, for an algebraic variety X defined over a number field k, to study the set $X(k)$ of rational points is a very important and very difficult question in number theory and in arithmetic algebraic geometry.

Rational points

- the variety X defined over \mathbb{Q} by $x^{2}+y^{2}=-1$
- $X(\mathbb{Q})=\emptyset, X(\mathbb{R})=\emptyset$, but $X(\mathbb{C}) \neq \emptyset$

Theorem (A. Wiles 1995: Fermat's last theorem)

For $n \geq 3$, define X by $x^{n}+y^{n}=z^{n}$. If $(x, y, z) \in X(\mathbb{Q})$ then $x y z=0$.

- In general, for an algebraic variety X defined over a number field k, to study the set $X(k)$ of rational points is a very important and very difficult question in number theory and in arithmetic algebraic geometry.

Rational points

- the variety X defined over \mathbb{Q} by $x^{2}+y^{2}=-1$
- $X(\mathbb{Q})=\emptyset, X(\mathbb{R})=\emptyset$, but $X(\mathbb{C}) \neq \emptyset$

Theorem (A. Wiles 1995: Fermat's last theorem)

For $n \geq 3$, define X by $x^{n}+y^{n}=z^{n}$. If $(x, y, z) \in X(\mathbb{Q})$ then $x y z=0$.

- In general, for an algebraic variety X defined over a number field k, to study the set $X(k)$ of rational points is a very important and very difficult question in number theory and in arithmetic algebraic geometry.

Rational points

- the variety X defined over \mathbb{Q} by $x^{2}+y^{2}=-1$
- $X(\mathbb{Q})=\emptyset, X(\mathbb{R})=\emptyset$, but $X(\mathbb{C}) \neq \emptyset$

Theorem (A. Wiles 1995: Fermat's last theorem)

For $n \geq 3$, define X by $x^{n}+y^{n}=z^{n}$. If $(x, y, z) \in X(\mathbb{Q})$ then $x y z=0$.

- In general, for an algebraic variety X defined over a number field k, to study the set $X(k)$ of rational points is a very important and very difficult question in number theory and in arithmetic algebraic geometry.

Rational points

- the variety X defined over \mathbb{Q} by $x^{2}+y^{2}=-1$
- $X(\mathbb{Q})=\emptyset, X(\mathbb{R})=\emptyset$, but $X(\mathbb{C}) \neq \emptyset$

Theorem (A. Wiles 1995: Fermat's last theorem)

For $n \geq 3$, define X by $x^{n}+y^{n}=z^{n}$. If $(x, y, z) \in X(\mathbb{Q})$ then $x y z=0$.

- In general, for an algebraic variety X defined over a number field k, to study the set $X(k)$ of rational points is a very important and very difficult question in number theory and in arithmetic algebraic geometry.

Local-global principle

- An easy observation: If a polynomial has solutions in $\mathbb{Q} \Rightarrow$ it has solutions in all extensions of \mathbb{Q}, in particular in \mathbb{R} and in all \mathbb{Q}_{p}
- for an algebraic variety X, $X(\mathbb{Q}) \neq \emptyset \Rightarrow X(\mathbb{R}) \neq \emptyset$ and $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$
- it is relatively easy to decide if $X(\mathbb{R})=\emptyset$: real analysis
- also "easy" to decide if $X\left(\mathbb{Q}_{p}\right)=\emptyset: p$-adic analysis
- p-adic analysis on $X \Longleftrightarrow$ the defining polynomials of X have common integer solutions $\bmod p^{n}$ for all $n \in \mathbb{N}$

Local-global principle

- An easy observation: If a polynomial has solutions in $\mathbb{Q} \Rightarrow$ it has solutions in all extensions of \mathbb{Q}, in particular in \mathbb{R} and in all \mathbb{Q}_{p}
- for an algebraic variety X, $X(\mathbb{Q}) \neq \emptyset \Rightarrow X(\mathbb{R}) \neq \emptyset$ and $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$
- it is relatively easy to decide if $X(\mathbb{R})=\emptyset$: real analysis - also "easy" to decide if $X\left(\mathbb{Q}_{p}\right)=\emptyset: p$-adic analysis
- p-adic analysis on $X \Longleftrightarrow$ the defining polynomials of X have common integer solutions $\bmod p^{n}$ for all $n \in \mathbb{N}$

Local-global principle

- An easy observation: If a polynomial has solutions in $\mathbb{Q} \Rightarrow$ it has solutions in all extensions of \mathbb{Q}, in particular in \mathbb{R} and in all \mathbb{Q}_{p}
- for an algebraic variety X, $X(\mathbb{Q}) \neq \emptyset \Rightarrow X(\mathbb{R}) \neq \emptyset$ and $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$
- it is relatively easy to decide if $X(\mathbb{R})=\emptyset$: real analysis
- also "easy" to decide if $X\left(\mathbb{Q}_{p}\right)=\emptyset: p$-adic analysis
- p-adic analysis on $X \Longleftrightarrow$ the defining polynomials of X have common integer solutions $\bmod p^{n}$ for all $n \in \mathbb{N}$

Local-global principle

- An easy observation: If a polynomial has solutions in $\mathbb{Q} \Rightarrow$ it has solutions in all extensions of \mathbb{Q}, in particular in \mathbb{R} and in all \mathbb{Q}_{p}
- for an algebraic variety X, $X(\mathbb{Q}) \neq \emptyset \Rightarrow X(\mathbb{R}) \neq \emptyset$ and $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$
- it is relatively easy to decide if $X(\mathbb{R})=\emptyset$: real analysis
- also "easy" to decide if $X\left(\mathbb{Q}_{p}\right)=\emptyset: p$-adic analysis
- p-adic analysis on $X \Longleftrightarrow$ the defining polynomials of X have common integer solutions $\bmod p^{n}$ for all $n \in \mathbb{N}$

Local-global principle

- An easy observation: If a polynomial has solutions in $\mathbb{Q} \Rightarrow$ it has solutions in all extensions of \mathbb{Q}, in particular in \mathbb{R} and in all \mathbb{Q}_{p}
- for an algebraic variety X, $X(\mathbb{Q}) \neq \emptyset \Rightarrow X(\mathbb{R}) \neq \emptyset$ and $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$
- it is relatively easy to decide if $X(\mathbb{R})=\emptyset$: real analysis
- also "easy" to decide if $X\left(\mathbb{Q}_{p}\right)=\emptyset: p$-adic analysis
- p-adic analysis on $X \Longleftrightarrow$ the defining polynomials of X have common integer solutions $\bmod p^{n}$ for all $n \in \mathbb{N}$

Local-global principle

- $k=$ a number field
- similarly $X(k) \neq \emptyset \Rightarrow X\left(k_{v}\right) \neq \emptyset\left(\forall v \in \Omega_{k}\right)$ and $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Hasse principle: if the inverse is also true $X\left(k_{v}\right) \neq \emptyset(\forall v \in \Omega) \Rightarrow X(k) \neq \emptyset$

Theorem (Hasse-Minkowski)

Let X be defined by a quadratic form with coefficients in k. Then the Hasse principle is true.

- Selmer: counter-example over $\mathbb{Q}, X: 3 x^{3}+4 x^{3}+5 z^{3}=0$
- X is a projective curve of genus 1
- $X(\mathbb{Q})=\emptyset$ but $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all p and $X(\mathbb{R}) \neq \emptyset$

Local-global principle

- $k=$ a number field
- similarly $X(k) \neq \emptyset \Rightarrow X\left(k_{v}\right) \neq \emptyset\left(\forall v \in \Omega_{k}\right)$ and $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Hasse principle: if the inverse is also true $X\left(k_{v}\right) \neq \emptyset(\forall v \in \Omega) \Rightarrow X(k) \neq \emptyset$

Theorem (Hasse-Minkowski)

Let X be defined by a quadratic form with coefficients in k. Then the Hasse principle is true.

- Selmer: counter-example over $\mathbb{Q}, X: 3 x^{3}+4 x^{3}+5 z^{3}=0$
- X is a projective curve of genus 1
- $X(\mathbb{Q})=\emptyset$ but $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all p and $X(\mathbb{R}) \neq \emptyset$

Local-global principle

- $k=$ a number field
- similarly $X(k) \neq \emptyset \Rightarrow X\left(k_{v}\right) \neq \emptyset\left(\forall v \in \Omega_{k}\right)$ and $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Hasse principle: if the inverse is also true $X\left(k_{v}\right) \neq \emptyset(\forall v \in \Omega) \Rightarrow X(k) \neq \emptyset$

Theorem (Hasse-Minkowski)
 Let X be defined by a quadratic form with coefficients in k. Then the Hasse principle is true.

- Selmer: counter-example over $\mathbb{Q}, X: 3 x^{3}+4 x^{3}+5 z^{3}=0$
- X is a projective curve of genus 1
- $X(\mathbb{Q})=\emptyset$ but $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all p and $X(\mathbb{R}) \neq \emptyset$

Local-global principle

- $k=$ a number field
- similarly $X(k) \neq \emptyset \Rightarrow X\left(k_{v}\right) \neq \emptyset\left(\forall v \in \Omega_{k}\right)$ and $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Hasse principle: if the inverse is also true $X\left(k_{v}\right) \neq \emptyset(\forall v \in \Omega) \Rightarrow X(k) \neq \emptyset$

Theorem (Hasse-Minkowski)

Let X be defined by a quadratic form with coefficients in k. Then the Hasse principle is true.

- Selmer: counter-example over $\mathbb{Q}, X: 3 x^{3}+4 x^{3}+5 z^{3}=0$
- X is a projective curve of genus 1
- $X(\mathbb{O})=\emptyset$ but $X\left(\mathbb{O}_{n}\right) \neq \emptyset$ for all p and $X(\mathbb{R}) \neq \emptyset$

Local-global principle

- $k=$ a number field
- similarly $X(k) \neq \emptyset \Rightarrow X\left(k_{v}\right) \neq \emptyset\left(\forall v \in \Omega_{k}\right)$ and $X(k) \subset \prod_{v \in \Omega} X\left(k_{v}\right)$
- Hasse principle: if the inverse is also true $X\left(k_{v}\right) \neq \emptyset(\forall v \in \Omega) \Rightarrow X(k) \neq \emptyset$

Theorem (Hasse-Minkowski)

Let X be defined by a quadratic form with coefficients in k. Then the Hasse principle is true.

- Selmer: counter-example over $\mathbb{Q}, X: 3 x^{3}+4 x^{3}+5 z^{3}=0$
- X is a projective curve of genus 1
- $X(\mathbb{Q})=\emptyset$ but $X\left(\mathbb{Q}_{p}\right) \neq \emptyset$ for all p and $X(\mathbb{R}) \neq \emptyset$

Weak approximation

- Weak approximation: if $X(k)$ is dense in $\prod_{v \in \Omega} X\left(k_{v}\right)$
- means there exist many many k-rational points
- Example (Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987): $k=\mathbb{Q}$, Châtelet surface $x^{2}+y^{2}=P(z), P(z) \in \mathbb{Q}[z]$ irreducible of degree 4
- weak approximation holds
- Counter-example (Iskovskikh 1971) $x^{2}+y^{2}=-\left(z^{2}-2\right)\left(z^{2}-3\right)$

Weak approximation

- Weak approximation: if $X(k)$ is dense in $\prod_{v \in \Omega} X\left(k_{v}\right)$
- means there exist many many k-rational points
- Example (Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987): $k=\mathbb{Q}$, Châtelet surface $x^{2}+y^{2}=P(z), P(z) \in \mathbb{Q}[z]$ irreducible of degree 4
- weak approximation holds
- Counter-example (Iskovskikh 1971)

Weak approximation

- Weak approximation: if $X(k)$ is dense in $\prod_{v \in \Omega} X\left(k_{v}\right)$
- means there exist many many k-rational points
- Example (Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987):
$k=\mathbb{Q}$, Châtelet surface $x^{2}+y^{2}=P(z), P(z) \in \mathbb{Q}[z]$ irreducible of degree 4

W http://en.wikipedia.org/wiki/File:Chatelet_surface.png

- weak approximation holds
- Counter-example (Iskovskikh 1971)

Weak approximation

- Weak approximation: if $X(k)$ is dense in $\prod_{v \in \Omega} X\left(k_{v}\right)$
- means there exist many many k-rational points
- Example (Colliot-Thélène, Sansuc, Swinnerton-Dyer 1987): $k=\mathbb{Q}$, Châtelet surface $x^{2}+y^{2}=P(z), P(z) \in \mathbb{Q}[z]$ irreducible of degree 4

W http://en.wikipedia.org/wiki/File:Chatelet_surface.png

- weak approximation holds
- Counter-example (Iskovskikh 1971):

$$
x^{2}+y^{2}=-\left(z^{2}-2\right)\left(z^{2}-3\right)
$$

A cohomological invariant

- Different behaviours between $X_{1}: x^{2}+y^{2}=P(z)(P$ irreducible) and $X_{2}: x^{2}+y^{2}=-\left(z^{2}-2\right)\left(z^{2}-3\right)$
- Why ?
- a cohomological invariant $\operatorname{Br}(X)=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{m}\right)$ Brauer group
- $\operatorname{Br}\left(X_{1}\right) / \operatorname{Br}(k)=0$ while $\operatorname{Br}\left(X_{2}\right) / \operatorname{Br}(k)=\mathbb{Z} / 2 \mathbb{Z}$

A cohomological invariant

- Different behaviours between $X_{1}: x^{2}+y^{2}=P(z)(P$ irreducible) and $X_{2}: x^{2}+y^{2}=-\left(z^{2}-2\right)\left(z^{2}-3\right)$
- Why ?
- a cohomological invariant $\operatorname{Br}(X)=H_{\text {et }}^{2}\left(X, \mathbb{G}_{m}\right)$ Brauer group of X
- $\operatorname{Br}\left(X_{1}\right) / \operatorname{Br}(k)=0$ while $\operatorname{Br}\left(X_{2}\right) / \operatorname{Br}(k)=\mathbb{Z} / 2 \mathbb{Z}$

A cohomological invariant

- Different behaviours between $X_{1}: x^{2}+y^{2}=P(z)(P$ irreducible) and $X_{2}: x^{2}+y^{2}=-\left(z^{2}-2\right)\left(z^{2}-3\right)$
- Why ?
- a cohomological invariant $\operatorname{Br}(X)=H_{\mathrm{et}}^{2}\left(X, \mathbb{G}_{m}\right)$ Brauer group of X
- $\operatorname{Br}\left(X_{1}\right) / \operatorname{Br}(k)=0$ while $\operatorname{Br}\left(X_{2}\right) / \operatorname{Br}(k)=\mathbb{Z} / 2 \mathbb{Z}$

Brauer-Manin pairing

- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- local class field theory: $i n v_{v}: \operatorname{Br}\left(k_{v}\right) \hookrightarrow \mathbb{Q} / \mathbb{Z}$

(by global class field theory)
$X(k)$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)

Brauer-Manin pairing

- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- local class field theory: $i n v_{v}: \operatorname{Br}\left(k_{v}\right) \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\left\{\left\{x_{v}\right\}_{v} ;\left\{x_{v}\right\}_{v} \perp \operatorname{Br}(X)\right\}$ Brauer-Manin set (by global class field theory) $X(k)$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)

Brauer-Manin pairing

- Brauer-Manin pairing

$$
\begin{gathered}
{\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}} \\
\left(\left\{x_{v}\right\}_{v \in \Omega}, \beta\right) \mapsto\left\langle\left\{x_{v}\right\}_{v}, \beta\right\rangle:=\sum_{v \in \Omega} \operatorname{inv}_{v}\left(\beta\left(x_{v}\right)\right)
\end{gathered}
$$

- local class field theory: $i n v_{v}: \operatorname{Br}\left(k_{v}\right) \hookrightarrow \mathbb{Q} / \mathbb{Z}$
- $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\left\{\left\{x_{v}\right\}_{v} ;\left\{x_{v}\right\}_{v} \perp B r(X)\right\}$ Brauer-Manin set
- Fact. $X(k) \subseteq \overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$
(by global class field theory)
$\overline{X(k)}$: closure of $X(k)$ in $\prod_{v} X\left(k_{v}\right)$ (product topology)

Brauer-Manin obstruction

- $X(k) \subseteq \overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\emptyset$ then $X(k)=\emptyset$ ($\prod_{v} X\left(k_{v}\right)$ can be non-empty) Hasse principle never happens
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$, weak approximation never happens
- This explains the differences between the above example and the counter-example
- If $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset \Rightarrow X(k) \neq \emptyset$, we say that Brauer-Manin obstruction is the only obstruction to Hasse principle
- If $=$, we say that Brauer-Manin obstruction is the only obstruction to weak approximation

Brauer-Manin obstruction

- $X(k) \subseteq \overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$
- Obstruction: if $\left[\Pi_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\emptyset$ then $X(k)=\emptyset$
($\Pi_{v} X\left(k_{v}\right)$ can be non-empty) Hasse principle never happens
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subsetneq \prod_{v \in \Omega} X\left(k_{v}\right)$, weak approximation never happens
- This explains the differences between the above example and the counter-example
- If $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset \Rightarrow X(k) \neq \emptyset$, we say that Brauer-Manin obstruction is the only obstruction to Hasse principle
- If $=$, we say that Brauer-Manin obstruction is the only obstruction to weak approximation

Brauer-Manin obstruction

- $X(k) \subseteq \overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\emptyset$ then $X(k)=\emptyset$
($\prod_{v} X\left(k_{v}\right)$ can be non-empty) Hasse principle never happens
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subsetneq \prod_{v \in \Omega} X\left(k_{v}\right)$, weak approximation never happens
- This explains the differences between the above example and the counter-example
e If $\left[\prod_{v \in \Omega} \times\left(k_{v}\right)\right]^{B r} \neq \emptyset \Rightarrow X(k) \neq \emptyset$, we say that Brauer-Manin obstruction is the only obstruction to Hasse principle
- If $=$, we say that Brauer-Manin obstruction is the only obstruction to weak approximation

Brauer-Manin obstruction

- $X(k) \subseteq \overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\emptyset$ then $X(k)=\emptyset$
($\prod_{v} X\left(k_{v}\right)$ can be non-empty) Hasse principle never happens
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subsetneq \prod_{v \in \Omega} X\left(k_{v}\right)$, weak approximation never happens
- This explains the differences between the above example and the counter-example
- If $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset \Rightarrow X(k) \neq \emptyset$, we say that Brauer-Manin obstruction is the only obstruction to Hasse principle
- If $=$, we say that Brauer-Manin obstruction is the only obstruction to weak approximation

Brauer-Manin obstruction

- $X(k) \subseteq \overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\emptyset$ then $X(k)=\emptyset$
($\prod_{v} X\left(k_{v}\right)$ can be non-empty) Hasse principle never happens
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subsetneq \prod_{v \in \Omega} X\left(k_{v}\right)$, weak approximation never happens
- This explains the differences between the above example and the counter-example
- If $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset \Rightarrow X(k) \neq \emptyset$, we say that Brauer-Manin obstruction is the only obstruction to Hasse principle
- If $=$, we say that Brauer-Manin obstruction is the only obstruction to weak approximation

Brauer-Manin obstruction

- $X(k) \subseteq \overline{X(k)} \subseteq\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subseteq \prod_{v \in \Omega} X\left(k_{v}\right)$
- Obstruction: if $\left[\Pi_{v \in \Omega} X\left(k_{v}\right)\right]^{B r}=\emptyset$ then $X(k)=\emptyset$ ($\Pi_{v} X\left(k_{v}\right)$ can be non-empty) Hasse principle never happens
- Obstruction: if $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \subsetneq \prod_{v \in \Omega} X\left(k_{v}\right)$, weak approximation never happens
- This explains the differences between the above example and the counter-example
- If $\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset \Rightarrow X(k) \neq \emptyset$, we say that Brauer-Manin obstruction is the only obstruction to Hasse principle
- If =, we say that Brauer-Manin obstruction is the only obstruction to weak approximation

Zero-cycles and Chow groups

- the group of zero-cycles:
- $Z_{0}(X)=\bigoplus_{P \in X} \mathbb{Z} \cdot P=$ free Abelian group generated by closed points on X
- the -group of zero-cycles:
- $C H_{0}(X)=Z_{0}(X) / \sim$ rational equivalence
- rational equivalence : a zero-cycle can be obtained from the other zero-cycle by a certain deformation
- example: $\mathrm{CH}_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$
- $\operatorname{deg}: Z_{0}(X) \rightarrow \mathbb{Z}, \operatorname{deg}\left(\sum_{F} n_{P} P\right)=\sum n_{P}[k(P): k]$
- deg : $\mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ is well-defined if X is a projective variety
- a k-rational point on X is a zero-cycle of degree 1

Zero-cycles and Chow groups

- the group of zero-cycles:
- $Z_{0}(X)=\bigoplus_{P \in X} \mathbb{Z} \cdot P=$ free Abelian group generated by closed points on X
- the 周-group of zero-cycles:
- $C H_{0}(X)=Z_{0}(X) / \sim$ rational equivalence
- rational equivalence : a zero-cycle can be obtained from the other zero-cycle by a certain deformation
- example: $C H_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$
- deg : $Z_{0}(X) \rightarrow \mathbb{Z}, \operatorname{deg}\left(\sum_{P} n_{P} P\right)=\sum n_{P}[k(P): k]$
- deg : $\mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ is well-defined if X is a projective variety
- a k-rational point on X is a zero-cycle of degree 1

Zero-cycles and Chow groups

- the group of zero-cycles:
- $Z_{0}(X)=\bigoplus_{P \in X} \mathbb{Z} \cdot P=$ free Abelian group generated by closed points on X
- the 周-group of zero-cycles:
- $C H_{0}(X)=Z_{0}(X) / \sim$ rational equivalence
- rational equivalence : a zero-cycle can be obtained from the other zero-cycle by a certain deformation
- example: $C H_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$
- $\operatorname{deg}: Z_{0}(X) \rightarrow \mathbb{Z}, \operatorname{deg}\left(\sum_{P} n_{P} P\right)=\sum n_{P}[k(P): k]$
- deg : $\mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ is well-defined if X is a projective variety
- a k-rational point on X is a zero-cycle of degree 1

Zero-cycles and Chow groups

- the group of zero-cycles:
- $Z_{0}(X)=\bigoplus_{P \in X} \mathbb{Z} \cdot P=$ free Abelian group generated by closed points on X
- the 周-group of zero-cycles:
- $C H_{0}(X)=Z_{0}(X) / \sim$ rational equivalence
- rational equivalence : a zero-cycle can be obtained from the other zero-cycle by a certain deformation
- example: $C H_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$
- deg : $Z_{0}(X) \rightarrow \mathbb{Z}, \operatorname{deg}\left(\sum_{P} n_{P} P\right)=\sum n_{P}[k(P): k]$
- deg
$\mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ is well-defined if X is a projective variety
- a k-rational point on X is a zero-cycle of degree 1

Zero-cycles and Chow groups

- the group of zero-cycles:
- $Z_{0}(X)=\bigoplus_{P \in X} \mathbb{Z} \cdot P=$ free Abelian group generated by closed points on X
- the 周-group of zero-cycles:
- $C H_{0}(X)=Z_{0}(X) / \sim$ rational equivalence
- rational equivalence : a zero-cycle can be obtained from the other zero-cycle by a certain deformation
- example: $C H_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$
- deg : $Z_{0}(X) \rightarrow \mathbb{Z}, \operatorname{deg}\left(\sum_{P} n_{P} P\right)=\sum n_{P}[k(P): k]$
- deg : $\mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ is well-defined if X is a projective variety
- a k-rational point on X is a zero-cycle of degree 1

Zero-cycles and Chow groups

- the group of zero-cycles:
- $Z_{0}(X)=\bigoplus_{P \in X} \mathbb{Z} \cdot P=$ free Abelian group generated by closed points on X
- the 周-group of zero-cycles:
- $C H_{0}(X)=Z_{0}(X) / \sim$ rational equivalence
- rational equivalence : a zero-cycle can be obtained from the other zero-cycle by a certain deformation
- example: $C H_{0}\left(\mathbb{P}^{n}\right)=\mathbb{Z}$
- deg : $Z_{0}(X) \rightarrow \mathbb{Z}, \operatorname{deg}\left(\sum_{P} n_{P} P\right)=\sum n_{P}[k(P): k]$
- deg : $\mathrm{CH}_{0}(X) \rightarrow \mathbb{Z}$ is well-defined if X is a projective variety
- a k-rational point on X is a zero-cycle of degree 1

Zero-cycles

- (Colliot-Thélène) Similarly, Brauer-Manin pairing

$$
\left[\prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

- The modified Chow group:

- complex $\mathrm{CH}_{0}(X) \rightarrow \prod_{v \in \Omega} \mathrm{CH}_{0}^{\prime}\left(X_{v}\right) \rightarrow \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})$

Zero-cycles

- (Colliot-Thélène) Similarly, Brauer-Manin pairing

$$
\left[\prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

- The modified Chow group:

$$
C H_{0}^{\prime}\left(X_{v}\right)= \begin{cases}C H_{0}\left(X_{v}\right), & v \text { is p-adic } \\ C H_{0}\left(X_{v}\right) / N_{\mathbb{C} \mid \mathbb{R}} C H_{0}\left(\bar{X}_{v}\right), & v \text { is real } \\ 0, & v \text { is complex }\end{cases}
$$

- complex $\mathrm{CH}_{0}(X) \rightarrow \prod_{v \in \Omega} \mathrm{CH}_{0}^{\prime}\left(X_{v}\right) \rightarrow \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})$

Zero-cycles

- (Colliot-Thélène) Similarly, Brauer-Manin pairing

$$
\left[\prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \times \operatorname{Br}(X) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

- The modified Chow group:

$$
C H_{0}^{\prime}\left(X_{v}\right)= \begin{cases}C H_{0}\left(X_{v}\right), & v \text { is } p \text {-adic } \\ C H_{0}\left(X_{v}\right) / N_{\mathbb{C} \mid \mathbb{R}} C H_{0}\left(\bar{X}_{v}\right), & v \text { is real } \\ 0, & v \text { is complex }\end{cases}
$$

- complex $\mathrm{CH}_{0}(X) \rightarrow \prod_{v \in \Omega} \mathrm{CH}_{0}^{\prime}\left(X_{v}\right) \rightarrow \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})$

Zero-cycles

- $M^{\wedge}:=\lim _{\curvearrowleft} M / n M$ for any abelian group M

$$
A_{0}(X):=\operatorname{ker}\left(C H_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right)
$$

- complex (E)

similarly, complex (E_{0})

Question: Are they exact?

Remark (Wittenberg)

Exactness of $(E) \Longrightarrow$

- Exactness of (E_{0})

Existence of $z \in C H_{0}(X)$ of degree 1 supposing the existence of a family of degree 1 zero-cycles $\left\{z_{v}\right\} \perp \operatorname{Br}(X)$ (Brauer-Manin obstruction is the only obstruction to Hasse principle for zero-cycles of degree 1)

Zero-cycles

- $M^{\wedge}:=\lim _{\curvearrowleft} M / n M$ for any abelian group M

$$
A_{0}(X):=\operatorname{ker}\left(C H_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right)
$$

- complex (E)

$$
\left[\mathrm{CH}_{0}(X)\right]^{\wedge} \rightarrow\left[\prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \xrightarrow{\longrightarrow} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})
$$

similarly, complex (E_{0})

$$
\left[A_{0}(X)\right] \rightarrow\left[\prod_{v \in \Omega} A_{0}\left(X_{v}\right)\right] \xrightarrow{\wedge} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})
$$

Question: Are they exact?

Remark (Wittenberg)

Exactness of $(E) \Longrightarrow$
Exactness of $\left(E_{0}\right)$

- Existence of $z \in C H_{0}(X)$ of degree 1 supposing the existence of a family of degree 1 zero-cycles $\left\{z_{v}\right\} \perp \operatorname{Br}(X)$ (Brauer-Manin obstruction is the only obstruction to Hasse principle for zero-cycles of degree 1)

Zero-cycles

- $M^{\wedge}:=\lim _{\leftrightarrows} M / n M$ for any abelian group M

$$
A_{0}(X):=\operatorname{ker}\left(C H_{0}(X) \xrightarrow{\operatorname{deg}} \mathbb{Z}\right)
$$

- complex (E)

$$
\left[\mathrm{CH}_{0}(X)\right] \xrightarrow{\longrightarrow}\left[\prod_{v \in \Omega} C H_{0}^{\prime}\left(X_{v}\right)\right] \xrightarrow{\longrightarrow} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})
$$

similarly, complex $\left(E_{0}\right)$

$$
\left[A_{0}(X)\right] \hat{\rightarrow}\left[\prod_{v \in \Omega} A_{0}\left(X_{v}\right)\right]^{\wedge} \operatorname{Hom}(\operatorname{Br}(X), \mathbb{Q} / \mathbb{Z})
$$

Question: Are they exact?

Remark (Wittenberg)

Exactness of $(E) \Longrightarrow$

- Exactness of $\left(E_{0}\right)$
- Existence of $z \in C H_{0}(X)$ of degree 1 supposing the existence of a family of degree 1 zero-cycles $\left\{z_{v}\right\} \perp \operatorname{Br}(X)$ (Brauer-Manin obstruction is the only obstruction to Hasse principle for zero-cycles of degree 1)

Examples and a conjecture

- (Cassels-Tate) $\left(E_{0}\right)$ is exact if $X=E$ is an elliptic curve (with finiteness of $\amalg(E)$ supposed).

- (Kato-Saito) (E) is exact if $X=C$ is a smooth curve (with finiteness of $\amalg(\operatorname{Jac}(C))$ supposed).

Confecture (Colliot-Thelene-Sansuc, Kato-Saito)
 The complex (E) and $\left(E_{0}\right)$ are exact for all smooth projective varieties.

Examples and a conjecture

- (Cassels-Tate) $\left(E_{0}\right)$ is exact if $X=E$ is an elliptic curve (with finiteness of $\amalg(E)$ supposed).
- (Kato-Saito) (E) is exact if $X=C$ is a smooth curve (with finiteness of $Ш(\operatorname{Jac}(C))$ supposed).

Conjecture (Colliot-Thélène-Sansuc, Kato-Saito)
 The complex (F) and (F_{0}) are evact for all smooth projective varieties.

Examples and a conjecture

- (Cassels-Tate) $\left(E_{0}\right)$ is exact if $X=E$ is an elliptic curve (with finiteness of $\amalg(E)$ supposed).
- (Kato-Saito) (E) is exact if $X=C$ is a smooth curve (with finiteness of $\amalg(\operatorname{Jac}(C))$ supposed).

Conjecture (Colliot-Thélène-Sansuc, Kato-Saito)

The complex (E) and $\left(E_{0}\right)$ are exact for all smooth projective varieties.
-

Poonen's 3-folds

- fibration $X \rightarrow C$
- base: C curve $C(k) \neq \emptyset$ finite and $\amalg(\operatorname{Jac}(C))<\infty$
- fibers: Châtelet surfaces
- Poonen 2010: $\emptyset=X(k) \subset\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset$
- Colliot-Thélène 2010: \exists global 0-cycles of degree 1 on X

Theorem (Liang)

The complex (E) is exact for Poonen's 3-folds.

Poonen's 3-folds

- fibration $X \rightarrow C$
- base: C curve $C(k) \neq \emptyset$ finite and $\amalg(\operatorname{Jac}(C))<\infty$
- fibers: Châtelet surfaces
- Poonen 2010: $\emptyset=X(k) \subset\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset$
- Colliot-Thélène 2010: \exists global 0-cycles of degree 1 on X

Theorem (Liang)

The complex (E) is exact for Poonen's 3-folds.

Poonen's 3-folds

- fibration $X \rightarrow C$
- base: C curve $C(k) \neq \emptyset$ finite and $\amalg(\operatorname{Jac}(C))<\infty$
- fibers: Châtelet surfaces
- Poonen 2010: $\emptyset=X(k) \subset\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset$
- Colliot-Thélène 2010: \exists global 0-cycles of degree 1 on X

Theorem (Liang)

The complex (E) is exact for Poonen's 3-folds.

Poonen's 3-folds

- fibration $X \rightarrow C$
- base: C curve $C(k) \neq \emptyset$ finite and $\amalg(\operatorname{Jac}(C))<\infty$
- fibers: Châtelet surfaces
- Poonen 2010: $\emptyset=X(k) \subset\left[\prod_{v \in \Omega} X\left(k_{v}\right)\right]^{B r} \neq \emptyset$
- Colliot-Thélène 2010: \exists global 0 -cycles of degree 1 on X

Theorem (Liang)

The complex (E) is exact for Poonen's 3-folds.
-

Rationally connectedness

Definition

$X_{/ k}$ is called rationally connected,
if for any $P, Q \in X(\mathbb{C})$, there exists a \mathbb{C}-morphism $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X_{\mathbb{C}}$ such that $f(0)=P$ and $f(\infty)=Q$.

- Example:

> - A homogeneous space of a connected linear algebraic group is rationally connected.

- Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus >0 is never rationally connected.
- Poonen's 3-folds are not rationally connected.

Rationally connectedness

Definition

$X_{/ k}$ is called rationally connected,
if for any $P, Q \in X(\mathbb{C})$, there exists a \mathbb{C}-morphism $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X_{\mathbb{C}}$ such that $f(0)=P$ and $f(\infty)=Q$.

- Example:
- A homogeneous space of a connected linear algebraic group is rationally connected.
- Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus >0 is never rationally connected Poonen's 3-folds are not rationally connected.

Rationally connectedness

Definition

$X_{/ k}$ is called rationally connected,
if for any $P, Q \in X(\mathbb{C})$, there exists a \mathbb{C}-morphism $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow X_{\mathbb{C}}$ such that $f(0)=P$ and $f(\infty)=Q$.

- Example:
- A homogeneous space of a connected linear algebraic group is rationally connected.
- Counter-examples:
- An abelian variety is never rationally connected.
- A smooth curve of genus >0 is never rationally connected.
- Poonen's 3-folds are not rationally connected.

Relation between rational points and 0-cycles

Theorem (Liang)

Let X be a smooth (projective) rationally connected variety defined over a number field k.

Assume that the Brauer-Manin obstruction is the only obstruction to weak approximation for rational points on $X \otimes_{k} K$, for any finite extension K/k.

Then, the complex (E) and $\left(E_{0}\right)$ are exact for X.

An application

- Recall : a result of Borovoi (1996).
$G_{/ k}$: connected linear algebraic group.
Y : homogeneous space of G with connected stabilizer (or with abelian stabilizer if G is simply connected).
X : smooth compactification of Y.
Then the Brauer-Manin obstruction is the only obstruction to weak approximation for rational points on X.
\square

An application

- Recall : a result of Borovoi (1996).
$G_{/ k}$: connected linear algebraic group.
Y : homogeneous space of G with connected stabilizer (or with abelian stabilizer if G is simply connected).
X : smooth compactification of Y.
Then the Brauer-Manin obstruction is the only obstruction to weak approximation for rational points on X.

Corollary

The complex $(E),\left(E_{0}\right)$ are exact for smooth compactifications of any homogeneous space of any connected linear algebraic group with connected stabilizer (or with abelian stabilizer if the group is simply connected).

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.

```
\Longrightarrow ~ ( k e y : ~ f i b r a t i o n ~ m e t h o d ~ a p p l i e d ~ t o ~ X ~ X ~ P \mathbb { P } \rightarrow \mathbb { P } ^ { 1 } \text { )}
- BM obstruction is the only obs. to "weak approx." for
zero-cycles of degree 1 on }\mp@subsup{X}{K}{},\forallK/k finite
\Longrightarrow ~ ( k e y : ~ g e n e r a l i z e d ~ H i l b e r t i a n ~ s u b s e t ) ~
- }\foralld\in\mathbb{Z}\mathrm{ , BM obstruction is the only obs. to "weak approx."
for zero-cycles of degree }d\mathrm{ on }(X\times\mp@subsup{\mathbb{P}}{}{1})k,\forallK/k finite
" (key: Theorem of Kollár-Szabó ( }X\mathrm{ is RC) + an argument of Wittenberg)
- Exactness of (E) for }X\times\mp@subsup{\mathbb{P}}{}{1
(key: homotonic invariance)
Exactness of (E) for }X\mathrm{ .
```


(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: generalized Hilbertian subset)
- $\forall d \in \mathbb{Z}, \mathrm{BM}$ obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{k}, \forall K / k$ finite
\Longrightarrow (key: Theorem of Kollár-Szabó $(X$ is $R C)+$ an argument of Wittenberg)
- Exactness of (E) for $X \times \mathbb{P}^{1}$
\longrightarrow (key: homotonic invariance)
Exactness of (E) for X.

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: generalized Hilbertian subset)
- $\forall d \in \mathbb{Z}$, BM obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{K}, \forall K / k$ finite.

```
\Longrightarrow ~ ( k e y : ~ T h e o r e m ~ o f ~ K o l l a ́ r - S z a b o ́ ~ ( X ~ i s ~ R C ) ~ + ~ a n ~ a r g u m e n t ~ o f ~ W i t t e n b e r g ) ~
- Exactness of }(E)\mathrm{ for }X\times\mp@subsup{\mathbb{P}}{}{1
(key: homotonic invariance)
    Exactness of (E) for X.
```


(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: generalized Hilbertian subset)
- $\forall d \in \mathbb{Z}$, BM obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{K}, \forall K / k$ finite.
\Longrightarrow (key: Theorem of Kollár-Szabó $(X$ is RC) + an argument of Wittenberg)
- Exactness of (E) for $X \times \mathbb{P}^{1}$.
\Longrightarrow (key: homotopic invariance)
- Exactness of (E) for X.

(Outline of) Proof.

- BM obstruction is the only obs. to weak approx. for rational points on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: fibration method applied to $X \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$)
- BM obstruction is the only obs. to "weak approx." for zero-cycles of degree 1 on $X_{K}, \forall K / k$ finite.
\Longrightarrow (key: generalized Hilbertian subset)
- $\forall d \in \mathbb{Z}$, BM obstruction is the only obs. to "weak approx." for zero-cycles of degree d on $\left(X \times \mathbb{P}^{1}\right)_{K}, \forall K / k$ finite.
\Longrightarrow (key: Theorem of Kollár-Szabó $(X$ is RC) + an argument of Wittenberg)
- Exactness of (E) for $X \times \mathbb{P}^{1}$.
\Longrightarrow (key: homotopic invariance)
- Exactness of (E) for X.

Thank you for your attention!

Yongqi LIANG

yongqi.liang@imj-prg.fr
http://www.imj-prg.fr/~yongqi.liang/

