从 log-concavity 谈起

李平

同济大学

2020-12-130中国科大

æ

<ロト <部ト < 注ト < 注ト

Definition

Given a sequence $\{a_0, a_1, \ldots, a_n\}$ of real numbers.

• It is called unimodal if for some $0 \le j \le n$ we have

$$a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n.$$

▲□ ► < □ ► </p>

Definition

Given a sequence $\{a_0, a_1, \ldots, a_n\}$ of real numbers.

• It is called unimodal if for some $0 \le j \le n$ we have

$$a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n.$$

• It is called log-concave if

$$a_i^2 \ge a_{i-1} \cdot a_{i+1}, \qquad \forall 1 \le i \le n-1.$$

▲ 同 ▶ → 三 ▶

Definition

Given a sequence $\{a_0, a_1, \ldots, a_n\}$ of real numbers.

• It is called unimodal if for some $0 \le j \le n$ we have

$$a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n.$$

• It is called log-concave if

$$a_i^2 \ge a_{i-1} \cdot a_{i+1}, \qquad \forall 1 \le i \le n-1.$$

• It is called strongly log-concave if the sequence $\{a_i/\binom{n}{i}\}$ is log-concave.

▲ 同 ▶ → 三 ▶

Definition

Given a sequence $\{a_0, a_1, \ldots, a_n\}$ of real numbers.

• It is called unimodal if for some $0 \le j \le n$ we have

$$a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_n.$$

• It is called log-concave if

$$a_i^2 \ge a_{i-1} \cdot a_{i+1}, \qquad \forall 1 \le i \le n-1.$$

- It is called strongly log-concave if the sequence $\{a_i/\binom{n}{i}\}$ is log-concave.
- strongly log-concave \Longrightarrow log-concave $\stackrel{a_i>0}{\Longrightarrow}$ unimodal.

Example

The sequence $\binom{n}{i}_{i=0}^{n}$ is (strongly) log-concave.

æ

《口》《聞》《臣》《臣》

Example

The sequence $\binom{n}{i}_{i=0}^{n}$ is (strongly) log-concave.

Example

Let $\lambda_1, \ldots, \lambda_n > 0$ and

$$e_i := \sum_{1 \le j_1 < \cdots < j_i \le n} \lambda_{j_1} \cdots \lambda_{j_i}, \qquad \widetilde{e}_i := rac{e_i}{\binom{n}{i}}, \qquad 1 \le i \le n.$$

Then

• $\tilde{e}_i^2 \geq \tilde{e}_{i-1}\tilde{e}_{i+1}$; (Newton) • $\tilde{e}_1 \geq \cdots \geq \tilde{e}_i^{\frac{1}{i}} \geq \cdots \geq \tilde{e}_n^{\frac{1}{n}}$. (Maclaurin) Moreover, the equality in each case holds iff all the λ_i are equal.

(日) (同) (三) (三)

Proposition

Let $P(x) = \sum_{i=0}^{n} a_i \cdot x^i$ be a real-coefficient polynomial with all the roots real, then the sequence $\{a_0, \ldots, a_n\}$ is strongly log-concave.

- 4 同 6 4 日 6 4 日 6

Proposition

Let $P(x) = \sum_{i=0}^{n} a_i \cdot x^i$ be a real-coefficient polynomial with all the roots real, then the sequence $\{a_0, \ldots, a_n\}$ is strongly log-concave.

Proof.

Set
$$b_i := a_i / {n \choose i}$$
, $D := d/dx$, $Q(x) := D^{j-1}P(x)$,

$$R(x) := x^{n-j+1}Q(x^{-1}), \ D^{n-j-1}R(x) = (\cdots)(b_{j-1}x^2+2b_jx+b_{j+1}).$$

Repeatedly applying Rolle's theorem yields the desired result.

Image: A image: A

Proposition

Let $P(x) = \sum_{i=0}^{n} a_i \cdot x^i$ be a real-coefficient polynomial with all the roots real, then the sequence $\{a_0, \ldots, a_n\}$ is strongly log-concave.

Proof.

Set
$$b_i := a_i / {n \choose i}$$
, $D := d/dx$, $Q(x) := D^{j-1}P(x)$,

$$R(x) := x^{n-j+1}Q(x^{-1}), \ D^{n-j-1}R(x) = (\cdots)(b_{j-1}x^2+2b_jx+b_{j+1}).$$

Repeatedly applying Rolle's theorem yields the desired result.

Example

If A is an $n \times n$ Hermitian symmetric matrix. Then the coefficients of the characteristic polynomial $P(x) := det(xI_n - A)$ are strongly log-concave.

Definition

The *q*-binomial coefficient $\binom{n}{k}_q$ $(n \ge k, n, k \in \mathbb{Z}_{\ge 0})$ is defined by

$$\binom{n}{k}_q := \frac{[n]!}{[k]![n-k]!}, \qquad [k]! := [1][2]\cdots[k], \qquad [j] := 1-q^j.$$

Image: A image: A

Definition

The *q*-binomial coefficient $\binom{n}{k}_{q}$ $(n \ge k, n, k \in \mathbb{Z}_{\ge 0})$ is defined by

$$\binom{n}{k}_q := \frac{[n]!}{[k]![n-k]!}, \qquad [k]! := [1][2]\cdots[k], \qquad [j] := 1-q^j.$$

Remark/Exercise

- When $q \ge 0$, $\binom{n}{0}_q$, $\binom{n}{1}_q$, ..., $\binom{n}{n}_q$ is log-concave.

| 4 同 🕨 🖌 🖉 🕨 🔺

Exercise

Let q be a prime power and \mathbb{F}_q the q-element finite field. The number of k-dimensional linear subspace in $(\mathbb{F}_q)^n$ is $\binom{n}{k}_q$.

- 4 同 6 4 日 6 4 日 6

э

Exercise

Let q be a prime power and \mathbb{F}_q the q-element finite field. The number of k-dimensional linear subspace in $(\mathbb{F}_q)^n$ is $\binom{n}{k}_q$.

Proposition

Let

$$\binom{n}{k}_q := \sum_{i=0}^{k(n-k)} a_i q^i.$$

Then the sequence a_i are unimodal and symmetric:

$$a_0 \leq a_1 \leq \cdots \leq a_{\lfloor \frac{k(n-k)}{2} \rfloor} \geq \cdots \geq a_{k(n-k)}, \qquad a_i = a_{k(n-k)-i}.$$

▲ 同 ▶ → 三 ▶

Exercise

Let q be a prime power and \mathbb{F}_q the q-element finite field. The number of k-dimensional linear subspace in $(\mathbb{F}_q)^n$ is $\binom{n}{k}_q$.

Proposition

Let

$$\binom{n}{k}_q := \sum_{i=0}^{k(n-k)} a_i q^i.$$

Then the sequence a_i are unimodal and symmetric:

$$a_0 \leq a_1 \leq \cdots \leq a_{\lfloor \frac{k(n-k)}{2} \rfloor} \geq \cdots \geq a_{k(n-k)}, \qquad a_i = a_{k(n-k)-i}.$$

$$\binom{4}{2}_{q} = 1 + q + 2q^{2} + q^{3} + q^{4}, \quad \text{not log-concave.}$$

Definition

A poset (partially ordered set) P is a set with a binary relation " \leq " satisfying

 $x \leq x, \ \forall x \in P;$

$$x \leq y \text{ and } y \leq x \Longrightarrow x = y;$$

$$3 x \leq y \text{ and } y \leq z \Longrightarrow x \leq z.$$

э

Definition

A poset (partially ordered set) P is a set with a binary relation " \leq " satisfying

 $x \leq x, \ \forall x \in P;$

$$3 \ x \leq y \text{ and } y \leq z \Longrightarrow x \leq z.$$

Example

۲

$$P = (\mathbb{Z}, \leq), \qquad P = (\{1, 2, \cdots, n\}, \leq);$$

E: some set, P

$$P = (2^E, \subset).$$

< 🗇 🕨 <

Theorem (R. Stanley, 1981)

- Let P be a finite poset with |P| = n.
- A bijective map σ : P → {1,..., n} is called order-preserving if x < y in P implies that σ(x) < σ(y).

Fix some $v \in P$.

$$N_i(v) := \left| \{ \text{order-preserving bijections } \sigma \text{ with } \sigma(v) = i \} \right|$$

Then the sequence $N_1(v), \ldots, N_n(v)$ is log-concave.

< /i>

Theorem (R. Stanley, 1981)

- Let P be a finite poset with |P| = n.
- A bijective map σ : P → {1,..., n} is called order-preserving if x < y in P implies that σ(x) < σ(y).

Fix some $v \in P$.

$$N_i(v) := |\{ \text{order-preserving bijections } \sigma \text{ with } \sigma(v) = i \} |$$

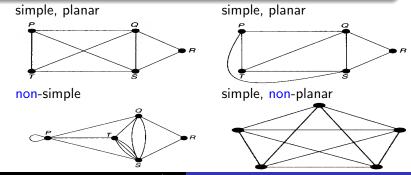
Then the sequence $N_1(v), \ldots, N_n(v)$ is log-concave.

Remark

Its solution needs the Alexandrov-Fenchel inequalities in convex geometry!

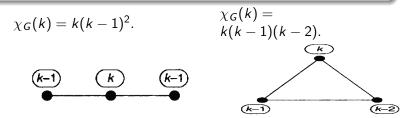
Definition

- A connected graph G is a pair consisting of a vertex set V(G) and an edge set E(G) such that each pair of vertices can be joined by edges.
- A connected graph G is called simple if there are no loops or multiple edges.



Definition (Birkhoff 1912, Whitney 1932)

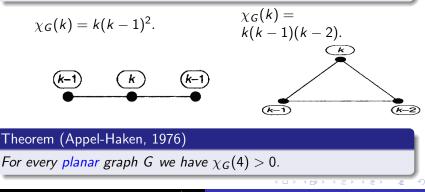
Let G be a simple graph. For $k \in \mathbb{Z}_{\geq 0}$, let $\chi_G(k)$ be the number of ways of coloring the vertices of G with k colors so that no two adjacent vertices have the same color. $\chi_G(\cdot)$ is called the chromatic polynomial of G.

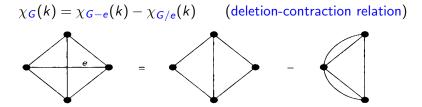


▲□ ► < □ ► </p>

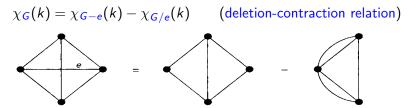
Definition (Birkhoff 1912, Whitney 1932)

Let G be a simple graph. For $k \in \mathbb{Z}_{\geq 0}$, let $\chi_G(k)$ be the number of ways of coloring the vertices of G with k colors so that no two adjacent vertices have the same color. $\chi_G(\cdot)$ is called the chromatic polynomial of G.





- ▲ 🖓 🕨 - ▲ 🖻



Proposition

- $\chi_G(k)$ is a polynomial in k with degree |V(G)|.
- *χ_G(k) = k[a₀(G)k^d − a₁(G)k^{d−1} + · · · + (−1)^da_d(G)] for* some positive integers a₀(G) = 1, a₁(G), . . . , a_d(G).

▲□ ► ▲ □ ► ▲

$$\chi_{G}(k) = \chi_{G-e}(k) - \chi_{G/e}(k) \quad \text{(deletion-contraction relation)}$$

Proposition

- $\chi_G(k)$ is a polynomial in k with degree |V(G)|.
- χ_G(k) = k[a₀(G)k^d a₁(G)k^{d-1} + ··· + (-1)^da_d(G)] for
 some positive integers a₀(G) = 1, a₁(G), ..., a_d(G).

Conjecture (Read 1968, Rota 1971)

The sequence $a_0(G), a_1(G), \ldots, a_d(G)$ is log-concave and hence unimodal.

Definition

A matroid M is a pair (E, \mathfrak{I}) , where E is a finite set and $\mathfrak{I} \subset 2^{E}$, called independent sets, and satisfy

- $2 I \in \mathfrak{I}, I' \subset I \Longrightarrow I' \in \mathfrak{I};$
- $\textbf{3} \ l_1, l_2 \in \mathfrak{I}, \ |l_2| > |l_1| \Longrightarrow \exists \ e \in l_2 l_1 \text{ such that } l_1 \cup \{e\} \in \mathfrak{I}.$

▲ 伊 ▶ ▲ 三 ▶

Definition

A matroid M is a pair (E, \mathfrak{I}) , where E is a finite set and $\mathfrak{I} \subset 2^{E}$, called independent sets, and satisfy

- $\ 2 \ \ I \in \mathfrak{I}, \ \ I' \subset I \Longrightarrow I' \in \mathfrak{I};$

 $\textbf{ o } I_1, I_2 \in \mathfrak{I}, \ |I_2| > |I_1| \Longrightarrow \exists \ e \in I_2 - I_1 \text{ such that } I_1 \cup \{e\} \in \mathfrak{I}.$

Example

• V: vector space over some field;

•
$$E = \{v_1, \ldots, v_n\}, v_i \in V;$$

۲

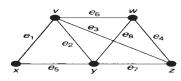
 $\mathfrak{I} := \{ I \subset E \ | \ I \text{ is linearly-independent in } V \}.$

Then (E, \mathfrak{I}) is a vector matroid.

Example

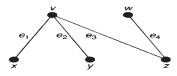
- G: simple graph; E = E(G);
- $\mathfrak{I} := \{ I \subset E(G) \mid I \text{ does not contain any cycle of } G \}.$

Then $M(G) := (E, \mathfrak{I})$ is a graphic matroid.



a maximal

independent set

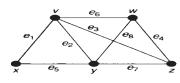


(日)

Example

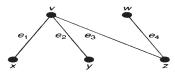
- G: simple graph; E = E(G);
- $\mathfrak{I} := \{ I \subset E(G) \mid I \text{ does not contain any cycle of } G \}.$

Then $M(G) := (E, \Im)$ is a graphic matroid.



a maximal

independent set



(日) (同) (三) (三)

э

Exercise

Show that this $(E(G), \Im)$ satisfies the three defining conditions.

Definition/Proposition

- $M = (E, \Im)$: matroid; $\forall A \subset E$, r(A) := rank of A;
- The characteristic polynomial of M is

$$\chi_M(t) := \sum_{A \subset E} (-1)^{|A|} t^{r(E) - r(A)}$$

=: $a_0(M) t^d - a_1(M) t^{d-1} + \dots + (-1)^d a_d(M).$

- $a_0(M) = 1, a_1(M), \dots, a_d(M)$ are positive integers.
- When G is a simple graph, $\chi_G(t)/t = \chi_{M(G)}(t)$.

- 4 同 6 4 日 6 4 日 6

Definition/Proposition

- $M = (E, \Im)$: matroid; $\forall A \subset E$, r(A) := rank of A;
- The characteristic polynomial of M is

$$\chi_M(t) := \sum_{A \subset E} (-1)^{|A|} t^{r(E) - r(A)}$$

=: $a_0(M) t^d - a_1(M) t^{d-1} + \dots + (-1)^d a_d(M).$

- $a_0(M) = 1, a_1(M), \dots, a_d(M)$ are positive integers.
- When G is a simple graph, $\chi_G(t)/t = \chi_{M(G)}(t)$.

Conjecture (Rota-Heron-Welsh, 1970s)

For a matroid M, the sequence $a_0(M), a_1(M), \ldots, a_d(M)$ is log-concave.

Theorem (Huh 2012, Huh-Katz 2012, Adiprasito-Huh-Katz 2018)

For a matroid M, the sequence $a_0(M), a_1(M), \ldots, a_d(M)$ is log-concave.

(日) (同) (三) (三)

э

Theorem (Huh 2012, Huh-Katz 2012, Adiprasito-Huh-Katz 2018)

For a matroid M, the sequence $a_0(M), a_1(M), \ldots, a_d(M)$ is log-concave.

Remark

- (JAMS., 2012) Huh first proved it for vector matroids over fields of characteristic zero, which include graphic matroids.
- (Math. Ann., 2012) Huh and Katz extended it for all vector matroids.
- (Ann. Math., 2018) Adiprasito-Huh-Katz proved the general case by establishing a combinatorial Hodge theory for matroids.

< A > < 3

Definition/Proposition

- In ℝⁿ a convex body is a compact convex subset with nonempty interior. Denote the set of all convex bodies by Kⁿ.
- $V_n(K) := n$ -dim volume of K in \mathbb{R}^n , $\forall K \in \mathcal{K}^n$.

•
$$\forall K_1, \ldots, K_m \in \mathcal{K}^n$$
, $\forall \lambda_1, \ldots, \lambda_m \ge 0$,

 $\lambda_1 \mathcal{K}_1 + \cdots + \lambda_m \mathcal{K}_m \stackrel{Minkowski sum}{:=} \{\lambda_1 k_1 + \cdots + \lambda_m k_m \mid k_i \in \mathcal{K}_i\} \in \mathcal{K}^n.$

(Minkowski) V_n(λ₁K₁···+ λ_mK_m) is a degree n homogeneous polynomial of λ₁,..., λ_m with nonnegative coefficients.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

The mixed volume $V(\cdot,\ldots,\cdot):(\mathcal{K}^n)^n\longrightarrow\mathbb{R}_{\geq 0}$ is defined by

$$V(K_1,\ldots,K_n) = V(K_{\sigma(1)},\ldots,K_{\sigma(n)}), \quad \forall \sigma \in S_n$$

$$V_n(\lambda_1 K_1 + \dots + \lambda_n K_n)$$

= $\sum_{i_1 + \dots + i_n = n} \frac{n!}{i_1! \cdots i_n!} \lambda_1^{i_1} \cdots \lambda_n^{i_n} V(K_1[i_1], \dots, K_n[i_n])$

i.e., $n!V(K_1, \ldots, K_n)$ is the coefficient in front of $\lambda_1 \cdots \lambda_n$.

・ロン ・部 と ・ ヨ と ・ ヨ と …

э

Theorem (Alexandrov-Fenchel, 1936)

For any $K_1, \ldots, K_n \in \mathcal{K}^n$, we have

 $V(K_1, K_2, K_3, \ldots, K_n)^2 \ge V(K_1, K_1, K_3, \ldots, K_n)V(K_2, K_2, K_3, \ldots, K_n).$

The equality case holds if K_1 and K_2 are homothetic, i.e., $K_2 = \lambda K_1 + t$ for some $t \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}_{>0}$.

▲ 伊 ▶ ▲ 三 ▶

Theorem (Alexandrov-Fenchel, 1936)

For any $K_1, \ldots, K_n \in \mathcal{K}^n$, we have

 $V(K_1, K_2, K_3, \ldots, K_n)^2 \ge V(K_1, K_1, K_3, \ldots, K_n)V(K_2, K_2, K_3, \ldots, K_n).$

The equality case holds if K_1 and K_2 are homothetic, i.e., $K_2 = \lambda K_1 + t$ for some $t \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}_{>0}$.

Corollary

Let $K, L \in \mathcal{K}^n$ and $a_i := V(\underbrace{K, \dots, K}_{i}, \underbrace{L, \dots, L}_{n-i}), \quad 0 \le i \le n.$ The the sequence a_0, a_1, \dots, a_n is log-concave.

Theorem (R. Stanley, 1981)

Let P be a finite poset with |P| = n. Fix some $v \in P$.

 $N_i(v) := |\{ \text{order-preserving bijections } \sigma \text{ with } \sigma(v) = i \} |.$

Then the sequence $N_1(v), \ldots, N_n(v)$ is log-concave.

(日)

Theorem (R. Stanley, 1981)

Let P be a finite poset with |P| = n. Fix some $v \in P$.

 $N_i(v) := |\{ \text{order-preserving bijections } \sigma \text{ with } \sigma(v) = i \} |.$

Then the sequence $N_1(v), \ldots, N_n(v)$ is log-concave.

$$P := \{v_1, \dots, v_{n-1}, v\}. \ \forall \sigma \in N_i(v), \text{ let } \pi \in S_{n-1} \text{ by}$$
$$\sigma(v_{\pi(1)}) < \dots < \sigma(v_{\pi(i-1)}) < \sigma(v_{\pi(i)}) < \dots < \sigma(v_{\pi(n-1)}).$$

$$egin{aligned} \mathcal{K} &:= \{(t_1, \ldots, t_{n-1}) \in \mathbb{R}^{n-1} \mid 0 \leq t_i \leq 1; \, t_i \leq t_j \, \, ext{if} \, \, v_i \leq v_j; \ t_i = 1 \, \, ext{if} \, \, v < v_i. \} \end{aligned}$$

 $\forall x, y \in \mathbb{R}_{\geq 0}$, we define

$$egin{aligned} \Delta_\sigma &:= \{(t_1,\ldots,t_{n-1}) \in \mathbb{R}^{n-1} \mid 0 \leq t_{\pi(1)} \leq \cdots \leq t_{\pi(i-1)} \leq x \leq t_{\pi(i)} \ &\leq \cdots \leq t_{\pi(n)} \leq x+y\}. \end{aligned}$$

Then $\Delta_{\sigma} \subset xK + yL$ and

$$V(xK + yL) = \sum_{\sigma} V(\Delta_{\sigma}) = \sum_{i=1}^{n} N_i(v) \frac{x^{i-1}}{(i-1)!} \frac{y^{n-i}}{(n-i)!}.$$
$$N_i(v) = (n-1)! \cdot V(\underbrace{K, \dots, K}_{i-1}, \underbrace{L, \dots, L}_{n-i}).$$

æ

<ロト <部ト < 注ト < 注ト

Theorem (Classical Hodge theory)

 X^n : compact Kähler manifold; $\mathcal{K}(X) \subset H^{1,1}(X; \mathbb{R})$: Kähler cone. $\forall \omega \in \mathcal{K}(X)$ and $p + q \leq n$,

 $P^{p,q}(X) := \{ \alpha \in H^{p,q}(X) \mid \alpha \wedge \omega^{n-p-q+1} = 0 \}$: primitive subspace.

• (HL)
$$H^{p,q}(X) \xrightarrow{\wedge \omega^{n-p-q}} H^{n-q,n-p}$$
.

• (LD)
$$H^{p,q}(X) = P^{p,q}(X) \oplus \left[\omega \wedge H^{p-1,q-1}(X) \right];$$

• (HR)

$$Q(\alpha,\beta) := (\sqrt{-1})^{q-p} (-1)^{\frac{(p+q)(p+q+1)}{2}} \int_X \alpha \wedge \bar{\beta} \wedge \omega^{n-p-q}$$

is positive-definite on $P^{p,q}(X)$.

Corollary

 X^n : compact Kähler. Then its Betti numbers $b_i = b_i(X)$ satisfy

$$b_0 \le b_2 \le b_4 \le \dots \le b_{[\frac{n}{2}]} \text{ or } b_{[\frac{n}{2}]} - 1, \qquad b_i = b_{2n-i}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Corollary

 X^n : compact Kähler. Then its Betti numbers $b_i = b_i(X)$ satisfy

$$b_0 \le b_2 \le b_4 \le \dots \le b_{[\frac{n}{2}]} \text{ or } b_{[\frac{n}{2}]} - 1, \qquad b_i = b_{2n-i}.$$

Corollary

 $G_k(\mathbb{C}^n)$: complex Grassmannian of k-dim subpaces in \mathbb{C}^n . Then

$$\sum_{i=0}^{k(n-k)} b_{2i} \big(G_k(\mathbb{C}^n) \big) q^i = \binom{n}{k}_q =: \sum_{i=0}^{k(n-k)} a_i q^i.$$

Consequently the sequence *a_i* are unimodal and symmetric:

$$a_0 \leq a_1 \leq \cdots \leq a_{\lfloor \frac{k(n-k)}{2} \rfloor} \geq \cdots \geq a_{k(n-k)}, \qquad a_i = a_{k(n-k)-i}.$$

Theorem (mixed version, Gromov 1990,..., Dinh-Nguyên 2006)

 $\forall \omega, \omega_1, \dots, \omega_{n-p-q} \in \mathcal{K}(X), \ p+q \leq n \text{ and } \Omega := \omega_1 \wedge \dots \wedge \omega_{n-p-q}.$

$$P^{p,q}(X) := \{ \alpha \in H^{p,q}(X) \mid \alpha \wedge \omega \wedge \Omega = 0 \}.$$

• (HL)
$$H^{p,q}(X) \xrightarrow{\wedge \Omega} H^{n-q,n-p}$$
.

• (LD)
$$H^{p,q}(X) = P^{p,q}(X) \oplus \left[\omega \wedge H^{p-1,q-1}(X) \right];$$

• (HR)

$$Q(lpha,eta):=(\sqrt{-1})^{q-p}(-1)^{rac{(p+q)(p+q+1)}{2}}\int_Xlpha\wedgeareta\wedge\Omega$$

is positive-definite on $P^{p,q}(X)$.

Corollary

 $\forall \omega_1, \ldots, \omega_n \in \mathcal{K}(X)$, we have the A-F type inequality

$$(\omega_1\omega_2\omega_3\cdots\omega_n)^2 \geq (\omega_1^2\omega_3\cdots\omega_n)\cdot(\omega_2^2\omega_3\cdots\omega_n).$$

The equality holds iff ω_1 and ω_2 are proportional.

- 4 同 6 4 日 6 4 日 6

Corollary

 $\forall \omega_1, \ldots, \omega_n \in \mathcal{K}(X)$, we have the A-F type inequality

$$(\omega_1\omega_2\omega_3\cdots\omega_n)^2 \geq (\omega_1^2\omega_3\cdots\omega_n)\cdot(\omega_2^2\omega_3\cdots\omega_n).$$

The equality holds iff ω_1 and ω_2 are proportional.

Corollary

 $\forall \gamma_1, \ldots, \gamma_n \in \overline{\mathcal{K}(X)}$ are called nef classes, we still have

$$(\gamma_1\gamma_2\gamma_3\cdots\gamma_n)^2 \geq (\gamma_1^2\gamma_3\cdots\gamma_n)\cdot(\gamma_2^2\gamma_3\cdots\gamma_n).$$

In particular, if $s_i := \gamma_1^i \gamma_2^{n-i}$, we have the Khovanskii-Teissier inequalities (around 1978)

$$s_i^2 \ge s_{i-1}s_{i+1}, \qquad 1 \le i \le n-1.$$

Definition

X: a mathematical object of "dimension" d. A Kähler package of X consist of a triple $(A(X), P(X), \mathcal{K}(X))$:

• a real vector space with a graded algebra structure:

$$A(X) = igoplus_{q=0}^d A^q(X), \qquad A^0(X) \cong \mathbb{R};$$

- a symmetric bilinear pairing P on A(X),
- a convex cone $\mathcal{K}(X) \subset A^1(X)$,

such that

< 🗇 > < 🖃 >

Definition

(PD) P(·, ·) is nondegenerate on A^q(X) × A^{d-q}(X).
(HL)

$$A^q(X) \stackrel{\cong}{\longrightarrow} A^{d-q}(X), \ \eta \longmapsto (\prod_{i=1}^{d-2q})\eta, \ \forall L_1, \ldots, L_{d-2q} \in \mathcal{K}(X);$$

• (HR)For all
$$L_0, L_1, \ldots, L_{d-2q} \in \mathcal{K}(X)$$
,

 $A^q(X) \times A^q(X) \longrightarrow \mathbb{R}, \qquad (\eta_1, \eta_2) \longmapsto (-1)^q P(\eta_1, (\prod_{i=1}^{d-2q} L_i)\eta_2)$

is positive-definite on the kernel of the linear map $A^q(X) \longrightarrow A^{d-q+1}(X), \ \eta \longmapsto (\prod_{i=0}^{d-2q} L_i)\eta.$

Corollary

Let X be a mathematical object of "dimension" d with a Kähler package $(A(X), P(X), \mathcal{K}(X))$. Then we have the Alexandrov-Fenchel type inequalities

$$P(1, L_1L_2 \cdots L_n)^2 \geq P(1, L_1^2L_3 \cdots L_n)P(1, L_2^2L_3 \cdots L_n), \ \forall L_i \in \mathcal{K}(X),$$

where the equality holds iff L_1 and L_2 are proportional.

A ► <

Corollary

Let X be a mathematical object of "dimension" d with a Kähler package $(A(X), P(X), \mathcal{K}(X))$. Then we have the Alexandrov-Fenchel type inequalities

$$P(1, L_1L_2 \cdots L_n)^2 \geq P(1, L_1^2L_3 \cdots L_n)P(1, L_2^2L_3 \cdots L_n), \ \forall L_i \in \mathcal{K}(X),$$

where the equality holds iff L_1 and L_2 are proportional.

• In particular, if α , $\beta \in \overline{\mathcal{K}(X)}$, the sequence

$$s_i := P(1, \alpha^i \beta^{n-i}), \qquad 0 \le i \le n$$

is log-concave.

Theorem (Adiprasito-Huh-Katz, 2018)

- Let M be a matroid of rank d + 1. Then there exists a Kähler package of dimension d (A(X), P(X), K(X)) on M.
- If the characteristic polynomial

$$egin{aligned} \chi_{\mathcal{M}}(t) &=: a_0 t^{d+1} - a_1 t^d + \cdots + (-1)^{d+1} a_{d+1} \ &=: (t-1) ig[\widetilde{a}_0 t^d - \widetilde{a}_1 t^{d-1} + \cdots + (-1)^d \widetilde{a}_dig], \end{aligned}$$

there exist $\alpha, \beta \in \overline{\mathcal{K}(X)}$ such that

$$\widetilde{a}_i = P(1, \alpha^i \beta^{d-i}), \qquad 0 \le i \le d.$$

Hence the sequence \tilde{a}_i as well as a_i is log-concave.

< /i>

Question

How to completely characterize the equality

$$V(K_1, K_2, K_3, \ldots, K_n)^2 = V(K_1, K_1, K_3, \ldots, K_n)V(K_2, K_2, K_3, \ldots, K_n)$$

for convex bodies K_1, \ldots, K_n ?

(日)

Question

How to completely characterize the equality

$$V(K_1, K_2, K_3, \ldots, K_n)^2 = V(K_1, K_1, K_3, \ldots, K_n)V(K_2, K_2, K_3, \ldots, K_n)$$

for convex bodies K_1, \ldots, K_n ?

Remark

• The homothety of K₁ and K₂ is only a sufficient but not necessary condition.

Image: A image: A

Question

How to completely characterize the equality

$$V(K_1, K_2, K_3, \ldots, K_n)^2 = V(K_1, K_1, K_3, \ldots, K_n)V(K_2, K_2, K_3, \ldots, K_n)$$

for convex bodies K_1, \ldots, K_n ?

Remark

- The homothety of K₁ and K₂ is only a sufficient but not necessary condition.
- Only have some partial results!

▲ 同 ▶ → 三 ▶

Theorem

 X^n : compact Kähler, $\omega_1, \ldots, \omega_n \in \mathcal{K}(X)$. Then

$$(\omega_1\omega_2\omega_3\cdots\omega_n)^2 = (\omega_1^2\omega_3\cdots\omega_n)(\omega_2^2\omega_3\cdots\omega_n)$$

iff ω_1 and ω_2 are proportional.

・ (日本)

Theorem

 X^n : compact Kähler, $\omega_1, \ldots, \omega_n \in \mathcal{K}(X)$. Then

$$(\omega_1\omega_2\omega_3\cdots\omega_n)^2 = (\omega_1^2\omega_3\cdots\omega_n)(\omega_2^2\omega_3\cdots\omega_n)$$

iff ω_1 and ω_2 are proportional.

Question

How about the situation if these ω_i are only assumed to be nef and big?

▲ 同 ▶ ▲ 目

Theorem (Boucksom-Favre-Jonsson 2009, Fu-Xiao 2014, Lehmann-Xiao 2016)

 $\gamma_1, \ldots, \gamma_n$: nef and big. Then

$$(\gamma_1 \cdots \gamma_n)^n = \prod_{i=1}^n \gamma_i^n$$

iff these γ_i are all proportional.

▲□ ► < □ ► </p>

Theorem (Boucksom-Favre-Jonsson 2009, Fu-Xiao 2014, Lehmann-Xiao 2016)

 $\gamma_1, \ldots, \gamma_n$: nef and big. Then

$$(\gamma_1\cdots\gamma_n)^n=\prod_{i=1}^n\gamma_i^n$$

iff these γ_i are all proportional.

Theorem (L. 2017)

 $\gamma_1, \ldots, \gamma_n$: nef and big. Then

$$(\gamma_1\gamma_2\gamma_3\cdots\gamma_n)^2 = (\gamma_1^2\gamma_3\cdots\gamma_n)(\gamma_2^2\gamma_3\cdots\gamma_n)$$

iff $\gamma_1 \wedge \gamma_3 \wedge \cdots \wedge \gamma_n$ and $\gamma_2 \wedge \gamma_3 \wedge \cdots \wedge \gamma_n$ are proportional in $H^{n-1,n-1}(X; \mathbb{R})$.

谢谢大家!

<ロ> <部> < 部> < き> < き> <</p>

æ