访问量:   最后更新时间:--

刘发林

博士生导师
硕士生导师
教师姓名:刘发林
教师英文名称:LIU Falin
电子邮箱:
学历:博士研究生毕业
联系方式:0551-63601922
学位:工学博士学位
职称:研究员
毕业院校:中国科学技术大学
所属院系:信息科学技术学院
学科:电子科学与技术    信息与通信工程    
其他联系方式

邮编:

办公室电话:

邮箱:

论文成果
Low Complexity Adaptive Model for Digital Predistortion of RF Power Amplifiers in Time-Varying Configurations
发布时间:2022-12-06    点击次数:

DOI码:10.1109/TMTT.2022.3224192

所属单位:中国科技大学电子工程与信息科学系

发表刊物:IEEE Transactions on Microwave Theory and Techniques

关键字:Decision tree, digital predistortion (DPD), greedy algorithm, piecewise model, power amplifiers (PAs), running complexity, time-varying configurations.

摘要:A novel behavioral modeling approach called adaptive model tree (AMT) is proposed for digital predistortion (DPD) of RF power amplifiers (PAs) in fixed and time-varying configurations. The AMT model is piecewise based on the decision tree and the reduced-complexity full basis-propagating selection (RC-FBPS) model. A novel two-step joint iterative algorithm is proposed to achieve a good match between the decision tree and the submodels obtained from the RC-FBPS model. The AMT model inherits and enhances the respective advantages of the decision tree and RC-FBPS model to have a powerful adaptive capability potentially. The experimental tests on a Doherty PA confirm that the AMT model can achieve a better trade-off between linearization performance and complexity than the state-of-the-art model in the fixed configuration. Furthermore, to characterize and compensate for the complex dynamic nonlinear distortions of PAs in time-varying configurations, the piecewise modeling technique in time-varying configurations is proposed and applied to the AMT model in this article. The experimental results confirm that the AMT model achieves excellent linearization performance with very low complexity in time-varying configurations and good generalization performance for new configuration combinations that are not used for training.

合写作者:Wen Qiao,Chengye Jiang,Guichen Yang,Jingchao Tan

第一作者:Renlong Han (韩仁龙)

论文类型:期刊论文

通讯作者:Falin Liu

论文编号:10.1109/TMTT.2022.3224192

学科门类:工学

文献类型:J

卷号:71

期号:5

页面范围:2004-2015

是否译文:

发表时间:2023-05-06

收录刊物:EI、SCI