![]()
 
  
         
       
            
- 
    教授
    博士生导师
    硕士生导师
 
- 电子邮箱:102dd1a0fcb32ab30c45bb7d83e1a1c0038822c5ba10b42202f291b373c896d60992ac73535ae62a7185a42b0a17acc2df1a0d330cc20bfa9d512837275153d2d0579247c4e302e42b5fa9272f614bec3969be846ee591abb4367f9d8fe6288088d7074192cc3c59a289231c3d989e292670e5d59930f635291d2954fc4d41a2
 
- 职务:副院长
 
- 学历:博士研究生毕业
 
- 学位:博士
 
- 毕业院校:哈尔滨工业大学、澳大利亚国立大学
 
  
          
         
        
访问量:
            
        
        
                        
        
    
   
    
        
            
                
                
               
    
        - 
            [1]秦家虎,秦家虎.On Group Synchronization for Interacting Clusters of Heterogeneous
    Systems.IEEE TRANSACTIONS ON CYBERNETICS,2017,47(12):4122-4133.
    
 
        - 
            [2]秦家虎,秦家虎.On Discrete-Time Convergence for General Linear Multi-Agent Systems
    Under Dynamic Topology.IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2014,59(4):1054-1059.
    
 
        - 
            [3]秦家虎,秦家虎.Multi-Timer Based Event Synchronization Control for Sensor Networks and
    Its Application.IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,2016,63(12):7765-7775.
    
 
        - 
            [4]秦家虎,秦家虎.Optimal Denial-of-Service Attack Scheduling With Energy Constraint Over
    Packet-Dropping Networks.IEEE TRANSACTIONS ON AUTOMATIC CONTROL,2018,63(6):1648-1663.
    
 
        - 
            [5]秦家虎,秦家虎.On leaderless and leader-following consensus for interacting clusters of
    second-order multi-agent systems.AUTOMATICA,2016,74214-221.
    
 
        - 
            [6]秦家虎,秦家虎.Fault-Tolerant Cooperative Tracking Control via Integral Sliding Mode
    Control Technique.IEEE-ASME TRANSACTIONS ON MECHATRONICS,2018,23(1):342-351.
    
 
        - 
            [7]秦家虎.Fault-tolerant coordination control for second-order multi-agent systems
    with partial actuator effectiveness.INFORMATION SCIENCES,2017,423115-127.
    
 
        - 
            [8]秦家虎,Optimal Synchronization Control of Multiagent Systems With Input
    Saturation via Off-Policy Reinforcement Learning.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,30(1):85-96.