扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 光寿红 ( 教授 )

    的个人主页 http://faculty.ustc.edu.cn/guangshouhong/en/index.htm

  •   教授   博士生导师
科学研究 当前位置: 中文主页 >> 科学研究

    主要研究领域:

    真核细胞中RNA的表达与加工的调节,真核生物中转录调节机制,非编码RNA的表达与调节机制,模式生物的遗传与发育,以及基因编辑和染色体操纵的新技术和新方法。

     

     

    主要研究成果:

       

    (1)  发现和解析了秀丽线虫细胞核RNA干扰通路,解析了获得性遗传的分子机制和生殖颗粒的组成与功能。

    具体包括确认了高等动物中存在着细胞核里的基因干扰现象;发现了siRNA从细胞质转运到细胞核的途径;发现和解析了nrde 通路;发现细胞核RNA干扰可以抑制RNA聚合酶II的转录延伸,造成转录的提前终止;发现高等动物中siRNA介导组蛋白的H3K9me3和H3K27me3甲基化;发现细胞核和细胞质RNAi干扰通路都参与了生物体获得性性状的多代遗传;发现了中心体周边的小干扰RNA和RNA干扰平台;发现了新的核周生殖课题包括D颗粒和E颗粒。

    (Science 2008;Nature 2010;PLoS Genetics 2011;Nature Genetics 2012;Genetics 2014;Curr. Biol. 2015;Cell Reports 2018;Nature Communications 2024a;Developmental Cell 2024;Science China-Life Science 2025)

    (2)  发现和解析了piRNA的转录与加工机器。

        具体包括发现了参与piRNA转录的上游序列转录复合物(USTC),发现了新的H3K27me3识别因子;发现并解析了piRNA加工与染色体分离复合物(PICS);阐明了类泛素化和相变调控piRNA转录的分子机制。

    (Genes & Development 2019;Cell Reports 2019;PNAS 2021;Nature Communications 2021;Nature Communications 2023)

    (3)  发现和解析了应激诱导的risiRNA的产生与核仁RNA 干扰过程,以及核仁结构重塑机制,发现了新的核仁应激响应通路。

        具体包括发现环境应激造成的rRNA表达与加工错误会诱导一类新的反义核糖体小干扰RNA(risiRNA)的产生,risiRNA通过 Nrde通路抑制rRNA的转录;在饥饿条件下,线虫改变其反式剪切模式,来适应对翻译的需求;而温度与衰老会改变核仁的蛋白质组,并造成核仁的结构发生剧烈的变化,形成核仁环和核仁腔;而且核仁应激还会诱导细胞核内新的亚细胞结构,核仁应激响应小体(NoSB),这一过程依赖于一条新NOSR-1/NUMR-1信号轴。

    (Nat Struct Mol Biol 2017;PNAS 2018;Nucleic Acids Research 2021a;JGG 2022;eLife, 2022;PLoS Genetics 2023;Cell Reports 2023;Nature Communications 2024b;)



    代表性学术论文:


     

    1.      Yaqian Zhang, Guangzhen Jiang, Ke Wang, Minjie Hong, Xinya Huang(*), Xiangyang Chen(*), Xuezhu Feng(*) and Shouhong Guang(*) (2025) Nucleolar proteomics revealed the regulation of RNA exosome localization by MTR4. Mol Cell Proteomics. 2025 Aug 24(8):101031. doi: 10.1016/j.mcpro.2025.101031

     

    2.      Chengming Zhu(#), Xiaoyue Si(#), Xinhao Hou, Panpan Xu, Jianing Gao, Yao Tang, Chenchun Weng, Mingjing Xu, Qi Yan, Qile Jin, Jiewei Cheng, Ke Ruan, Ying Zhou, Ge Shan, Demin Xu, Xiangyang Chen, Shengqi Xiang(*), Xinya Huang(*), Xuezhu Feng(*) & Shouhong Guang(*) (2025) piRNA gene density and SUMOylation organize piRNA transcriptional condensate formation. Nature Structural & Molecular Biology 2025 May 2. doi: 10.1038/s41594-025-01533-5

     

    3.      Qile Jin(#), Xuezhu Feng(#), Minjie Hong, Ke Wang, Xiangyang Chen, Jiewei Cheng, Yan Kuang, Xiaoyue Si, Mingjing Xu, Xinya Huang(*), Shouhong Guang(*) and Chengming Zhu(*) (2025a) Peri-centrosomal localization of small interfering RNAs in C. elegans. SCIENCE CHINA Life Sciences 2025 Apr;68(4):895-911, https://doi.org/10.1007/s11427-024-2818-7

     

    4.      Xiaona Huang(#), Xuezhu Feng(#), Yong-hong Yan(#), Demin Xu, Ke Wang, Chengming Zhu, Meng-qiu Dong, Xinya Huang(*), Shouhong Guang(*) and Xiangyang Chen(*) (2025) Compartmentalized localization of perinuclear proteins within the germ granuosome in C. elegans. Developmental Cell 2025 Apr 21;60(8):1251-1270.e3. doi: 10.1016/j.devcel.2024.12.016

     

    5.      Meili Li, Chengming Zhu, Zheng Xu, Mingjing Xu, Yan Kuang, Xinhao Hou, Xinya Huang, Mengqi Lv, Yongrui Liu, Yong Zhang, Ziyan Xu, Xu Han, Suman Wang, Yunyu Shi(*), Shouhong Guang(*), Fudong Li(*) (2024c) Structural Basis for C. elegans Pairing Center DNA Binding Specificity by the ZIM/HIM-8 family proteins. Nature Communications, 2024 Nov 28 https://doi.org/10.1038/s41467-024-54548-9

     

    6.      Minjie Hong(#), Xiaotian Zhou(#), Chenming Zeng, Demin Xu, Ting Xu, Shimiao Liao, Ke Wang, Chengming Zhu, Ge Shan, Xinya Huang(*), Xiangyang Chen(*), Xuezhu Feng(*) & Shouhong Guang(*) (2024b) Nucleolar stress induces nucleolar stress body formation via the NOSR-1/NUMR-1 axis in Caenorhabditis elegans. Nature Communications, 2024 Aug 23;15(1):7256. doi: 10.1038/s41467-024-51693-z

     

    7.      Xiangyang Chen(#), Ke Wang(#), Farees Ud Din Mufti(#), Demin Xu, Chengming Zhu, Xinya Huang, Chenming Zeng, Qile Jin, Xiaona Huang, Yong-hong Yan, Meng-qiu Dong, Xuezhu Feng(*), Yunyu Shi(*), Scott Kennedy(*) & Shouhong Guang(*) (2024a) Germ granule compartments coordinate specialized small RNA production. Nature Communications, 2024 Jul 10;15(1):5799. doi: 10.1038/s41467-024-50027-3.

     

    8.      Demin Xu(#), Xiangyang Chen(#), Yan Kuang, Minjie Hong, Ting Xu, Ke Wang, Xinya Huang, Chuanhai Fu, Ke Ruan, Chengming Zhu(*), Xuezhu Feng(*) and Shouhong Guang(*) (2023) rRNA intermediates coordinate the formation of nucleolar vacuoles in C. elegans. Cell Reports, 2023 Aug 29;42(8):112915. doi: 10.1016/j.celrep.2023.112915. Epub 2023 Aug 1.

     

    9.      Xinhao Hou(#), Mingjing Xu(#), Chengming Zhu(#), Jianing Gao, Meili Li, Xiangyang Chen, Cheng Sun, Björn Nashan, Jianye Zang, Ying Zhou(*), Shouhong Guang(*), and Xuezhu Feng(*) (2023) Systematic characterization of chromodomain proteins reveals an H3K9me1/2 reader regulating aging in C. elegans. Nature Communications, 2023 Mar 6;14(1):1254. doi: 10.1038/s41467-023-36898-y.

     

    10.   Ting Xu, Shimiao Liao, Meng Huang, Chengming Zhu, Xiaona Huang, Qile Jin, Demin Xu, Chuanhai Fu, Xiangyang Chen(*), Xuezhu Feng(*) and Shouhong Guang(*) (2023) A ZTF-7/RPS-2 complex mediates the cold-warm response in C. elegans. PLoS Genetics, 2023 Feb 10;19(2):e1010628. doi: 10.1371/journal.pgen.1010628

     

    11.   Meng Huang(#), Minjie Hong(#), Chengming Zhu, Di Chen(*), Xiangyang Chen(*), Shouhong Guang(*), and Xuezhu Feng(*) (2022) H3K9me1/2 methylation limits the lifespan of daf-2 mutants in C. elegans. eLife. 2022 Sep 20;11:e74812. doi: 10.7554/eLife.74812.

     

    12.   Xinhao Hou(#), Chengming Zhu, Mingjing Xu, Xiangyang Chen, Cheng Sun, Björn Nashana(*), Shouhong Guang(*), and Xuezhu Feng(*) (2022) The SNAPc complex mediates starvation-induced trans-splicing in C. elegans. Journal of Genetics and Genomics, 2022 Oct;49(10):952-964. doi: 10.1016/j.jgg.2022.02.024. Epub 2022 Mar 10.

     

    13.   Xiaoyang Wang(#), Chenming Zeng(#), Shanhui Liao(#), Zhongliang Zhu, Jiahai Zhang, Xiaoming Tu, Xuebiao Yao, Xuezhu Feng(*), Shouhong Guang(*), and Chao Xu(*) (2021) Molecular basis for PICS-mediated piRNA biogenesis and cell division. Nature Communications, 2021 Sep 22;12(1):5595. doi: 10.1038/s41467-021-25896-7

     

    14.   Shimiao Liao(#), Xiangyang Chen(#), Ting Xu(#), Qile Jin, Zongxiu Xu, Demin Xu, Xufei Zhou, Chengming Zhu(*), Shouhong Guang(*) and Xuezhu Feng(*) (2021a) Antisense ribosomal siRNAs inhibit RNA polymerase I-directed transcription in C. elegans Nucleic Acids Research 2021 Sep 20;49(16):9194-9210. doi: 10.1093/nar/gkab662.

     

    15.   Zheng Xu(#), Jie Zhao, Minjie Hong, Chenming Zeng, Shouhong Guang(*), Yunyu Shi(*) (2021b) Structural recognition of the mRNA 3’ UTR by PUF-8 restricts the lifespan of C. elegans. Nucleic Acids Research, 2021 Sep 27;49(17):10082-10097. doi: 10.1093/nar/gkab754

     

    16.   Xinya Huang(#), Peng Cheng(#), Chenchun Weng, Zongxiu Xu, Chenming Zeng, Xiangyang Chen(*), Chengming Zhu(*), Shouhong Guang(*), and Xuezhu Feng(*) (2021) A chromodomain protein mediates heterochromatin-directed piRNA expression. PNAS, 2021 Jul 6;118(27):e2103723118. doi: 10.1073/pnas.2103723118

     

    17.   Chenming Zeng (#), Chenchun Weng (#), Xiaoyang Wang (#), Yong-Hong Yan (#), Wen-Jun Li, Demin Xu, Minjie Hong, Shanhui Liao, Meng-Qiu Dong, Xuezhu Feng (*), Chao Xu (*), and Shouhong Guang (*) (2019) Functional proteomics identifies a PICS complex required for piRNA maturation and chromosome segregation. Cell Reports 2019 Jun 18;27(12):3561-3572.e3. doi: 10.1016/j.celrep.2019.05.076


    18. Chenchun Weng (#), Joanna      Kosalka (#), Ahmet C. Berkyurek (#), Przemyslaw Stempor, Xuezhu Feng, Hui      Mao, Chenming Zeng, Wen-Jun Li, Yong-Hong Yan, Meng-Qiu Dong, Natalia      Rosalía Morero, Cecilia Zuliani, Orsolya Barabas, Julie Ahringer, Shouhong      Guang (*), and Eric A. Miska (*) (2019) The USTC complex co-opts an      ancient machinery to drive piRNA transcription in C. elegans. Genes      & Development 2019 Jan      1;33(1-2):90-102. doi: 10.1101/gad.319293.118. Epub 2018 Dec 19.

     

    19. Chengming Zhu (#), Qi Yan (#), Chenchun      Weng, Xinhao Hou, Hui Mao, Dun Liu, Xuezhu Feng (*), Shouhong Guang      (*) (2018) Erroneous ribosomal RNAs promote the generation of antisense      ribosomal siRNA. PNAS 2018 Oct 2;115(40):10082-10087. doi: 10.1073/pnas.1800974115.


    20. Chen X (#*), Liao S (#), Huang X, Xu T,      Feng X, Guang Shouhong (*). (2018) Targeted Chromosomal      Rearrangements via a Combinatorial Use of CRISPR/Cas9 and Cre/LoxP      Technologies in Caenorhabditis elegans. G3 (Bethesda). 2018      Jul 31;8(8):2697-2707. doi: 10.1534/g3.118.200473.


    21. Fei Xu (#), Xuezhu Feng      (#), Xiangyang Chen, Chenchun Weng, Qi Yan, Ting Xu, Minjie Hong, and      Shouhong Guang (*)2018A cytoplasmic Argonaute      protein promotes the inheritance of RNAi. Cell Reports. 2018      May 22;23(8):2482-2494. doi: 10.1016/j.celrep.2018.04.072

     

    22.   Xufei Zhou (#), Xuezhu Feng (#), Hui Mao, Mu Li, Fei Xu, Kai Hu, and Shouhong Guang(*)  (2017) RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nature Structural & Molecular Biology 2017 Mar;24(3):258-269. doi: 10.1038/nsmb.3376.

     

    23.   Chen X (#), Li M (#), Feng X (*), Shouhong Guang (*) (2015) Targeted Chromosomal Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology in Caenorhabditis elegans. Genetics 2015 Dec;201(4):1295-306 doi: 10.1534/genetics.115.181883.

     

    24.   Hui Mao (#), Chengming Zhu (#), Dandan Zong, Chenchun Weng, Xiangwei Yang, Hui Huang, Dun Liu, Xuezhu Feng (*), and Shouhong Guang (*) (2015) The Nrde pathway mediates small RNA-directed histone H3 lysine 27 trimethylation in Caenorhabditis elegans. Current Biology 2015 Sep 21;25(18):2398-403. doi: 10.1016/j.cub.2015.07.051. Epub 2015 Sep 10.

     

    25.   Xiangyang Chen (#), Fei Xu (#), Chengming Zhu, Jiaojiao Ji, Xufei Zhou, Xuezhu Feng (*), and Shouhong Guang (*) (2014) Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Scientific Reports 2014 Dec 22;4:7581. doi: 10.1038/srep07581.

     

    26.   Zhou X (#), Xu F (#), Mao H, Ji J, Yin M, Feng X (*), and Shouhong Guang (*) (2014) Nuclear RNAi Contributes to the Silencing of Off-Target Genes and Repetitive Sequences in Caenorhabditis elegans. Genetics 2014 May;197(1):121-32. doi: 10.1534/genetics.113.159780.

     

    27.   Sam Guoping Gu, Julia Pak, Shouhong Guang, Jay M. Maniar, Scott Kennedy, and Andrew Fire, (2012) Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nature Genetics 2012Jan 8;44(2):157-64. doi: 10.1038/ng.1039..

     

    28.   Burkhart, K.B., Guang, Shouhong, Bochner, A.F., and Kennedy, S., (2011) A pre-mRNA–associating factor links endogenous siRNAs to chromatin regulation. PLoS Genetics, 2011 Aug;7(8):e1002249. doi: 10.1371/journal.pgen.1002249. Epub 2011 Aug 25..

     

    29.   Guang, Shouhong (#), Bochner, A.F., Pavelec, D.M., Burkhart, K.B., Burton, N., and Kennedy, S., (2010) Small regulatory RNAs inhibit RNA Polymerase II during the elongation phase of transcription. Nature, 2010Jun 24;465(7301):1097-101. doi: 10.1038/nature09095. Epub 2010 Jun 13.

          

    30.   Guang, Shouhong (#), Bochner, A.F. (#), Pavelec, D.M., Burkhart, K.B., Harding, S., Lachowiec, J., and Kennedy, S., (2008) An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science Jul 25;321(5888):537-41. doi: 10.1126/science.1157647. Erratum in: Science. 2009 Dec    

     

    31.   Guang, Shouhong, Felthauser, A., and Mertz, J. (2005) Binding of hnRNP L to the pre-mRNA processing enhancer (PPE) of herpes simplex virus’ thymidine kinase gene enhances both polyadenylation and nucleocytoplasmic export of intronless mRNAs. Mol. Cell. Biol. Aug;25(15):6303-13.

     

    32.   Guang, Shouhong and Mertz, J.E. (2005) PPE-like elements from intronless genes play additional roles in mRNA biogenesis than do ones from intron-containing genes. Nucleic Acid Res. Apr 20;33(7):2215-26. Print 2005.

     


  • 暂无内容
  • 暂无内容
版权所有 ©2020 中国科学技术大学
地址:安徽省合肥市金寨路 96 号,邮政编码:230026