构建多相催化的基础理论模型是催化学科发展的核心目标,是纳米催化由经验积累走向科学的关键步骤。课题组以氧化物负载纳米催化剂的烧结生长动力学过程为核心,综合采用解析推导、数值模拟、神经网络势函数分子动力学模拟、符号回归机器学习算法,取得的主要成果:
1. 金属-载体相互作用决定的抗烧结Sabatier原理。以数据驱动大数据分析的思想,揭示了决定金属纳米粒子和金属原子的能量学及其与单组分载体相互作用的一般性标度关系,建立了纳米催化剂的尺寸生长动力学与金属-载体间相互作用的归一化的普适性的竞争性依赖关系,找到了302组负载金属纳米催化剂抗烧结开始温度对金属-载体界面粘附能的统一的火山型曲线,即金属纳米催化剂与载体的相互作用既不能太强,否则会导致以Ostwald熟化的方式失活;也不能太弱,否则会导致以粒子迁移与碰撞的机制失活;只有相互作用适中时,金属纳米催化剂的稳定性达到最优,其耐受温度为体相金属熔点温度的一半,即长期以来实验科学家经验发现的所谓塔曼温度。基于该理论提出了双功能载体的氧化物载体的概念和设计策略,高通量筛选了6724种双组分异能载体,从而突破火山型曲线顶点的限制,使金属纳米催化剂的耐热温度远超塔曼温度。该理论被基于第一性原理神经网络势函数的分子动力学模拟和已发表的实验数据验证,为解决面向双碳、能源和环境重大工业需求的催化反应中的关键科学与技术问题为使命,依据数据驱动纳米催化材料科学中一般性原理和规律发现并数学模型化的思想,发展包含催化活性的催化剂动态演化理论,以指导稳健高活性纳米催化剂理性设计、开发奠定了坚实的理论基础。
2. 纳米粒子的扩散系数和临界担载量理论公式模型。使用神经网络势分子动力学模拟得到了纳米粒子扩散系数和接触角的依赖关系,并建立了表面和界面原子决定的纳米粒子扩散系数公式。通过神经网络势函数分子动力学模拟研究了二氧化钛不同晶相的不同晶面负载的Au纳米粒子的化学势随尺寸的依赖关系,并发展了相应的化学势公式模型,在此基础上,得到了贵金属纳米粒子的扩散系对接触角的依赖关系,进而得到了基于纳米粒子迁移团聚机制的纳米粒子抗烧结稳定性的临界担载量。此理论模型建立了金属载体相互作用增强诱导的反常的纳米粒子扩散系数公式,并揭示其物理起源为粒子表面和界面原子流动驱动的纳米粒子扩散机制随着金属载体相互作用变化趋势的竞争,为纳米粒子扩散行为揭示了新的机理,促进了对于纳米尺寸物质输运动力学的理解。纳米粒子的表面扩散是基本的微尺度物质动力学过程,本研究揭示的强的金属-载体界面作用诱导的反常的粒子扩散系数及其微观原子机理,对于推动纳米材料的动力学过程的理解具有重要的促进作用。
3. 氧化物负载氧化物体系失活动力学理论研究。 针对LaSrFeO负载的SrO薄膜在表面氧还原和插入反应,揭示了氧气分子解离、插入和扩散过程对负载的SrO由于沉层数不同导致的反应决速步由解离转变为插入和扩散主导,给出了反应决速步能垒随着SrO薄膜层数的倒火山型依赖关系,揭示其物理起源是SrO的存在诱导的电荷转移促进的氧气分子解离和过量SrO的存在导致的解离后的氧原子插入载体晶格并扩散过程的受阻之间的平衡,开辟了借助表面终端原子类型和层厚调变催化机制及活性的新途径,对于多相催化活性本质的理解和原子结构工程具有重要的案例和指导意义,对于其他不局限于钙钛矿体系的催化反应的原子尺度性能调控具有重要的启发和参考价值。
发表论文
1) Tairan Wang#, Jianyu Hu#, Runhai Ouyang#, Yutao Wang, Yi Huang, Sulei Hu and Wei-Xue Li., Nature of metal-support interaction for metal catalysts on oxide supports, Science, 2024, 386, 915-920.
2) Sulei Hu, Wei-Xue Li*, Sabatier principle of metal–support interaction for design of ultrastable metal nanocatalysts, Science, 2021, 374, 1360-1365..
3) Peng Yin#, Sulei Hu#, Kun Qian, Zeyue Wei, Le-Le Zhang, Yue Lin*, Weixin Huang, Haifeng Xiong, Wei-Xue Li*, Hai-Wei Liang*, Quantification of “safe” inter-particle distance for mitigating catalyst sintering, Nat. Commun., 2021, 12, 4865.
4) Siyan Cao, Xuting Chai, Sulei Hu*, Wei-Xue Li*, First-Principles Study of Oxygen-Induced Disintegration and Ripening of Late Transition Metal Nanoparticles on Rutile-TiO2(110), J. Phys. Chem. C 2022, 126, 8056-8064.
5) Shiyan Cao, Sulei Hu* and Wei-Xue Li*., First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110), Chinese Journal of Chemical Physics, 2023, 36, 411-418.
6) Yancai Yao#, Sulei Hu#, Wenxing Chen#, Zheng-Qing Huang, Weichen Wei, Tao Yao, Ruirui Liu, Ketao Zang, Xiaoqian Wang, Geng Wu, Wenjuan Yuan, Tongwei Yuan, Baiquan Zhu, Wei Liu, Zhijun Li, Dongsheng He, Zhenggang Xue, Yu Wang, Xusheng Zheng, Juncai Dong, Chun-Ran Chang, Yanxia Chen, Xun Hong, Jun Luo, Shiqiang Wei, Wei-Xue Li*, Peter Strasser, Yuen Wu*, Yadong Li, Engineering the Electronic Structure of Single Atomic Ru Sites via Compressive Strain Boosts Acidic Water Oxidation Electrocatalysis, Nat. Catal., 2019, 2, 304-313.
7) Sulei Hu, Wei-Xue Li, Metal Support Interaction Controlled Migration and Coalescence of Supported Particles, Sci. China Tech. Sci., 2019, 62, 762.
8) Sulei Hu, Wei-Xue Li*, Influence of Particle Size Distribution on Half-Life Time and Onset Temperature of Ostwald Ripening of Supported Particles, ChemCatChem, 2018, 10, 2900~2907.
9) Sulei Hu, Wei-Xue Li*, Theoretical Investigation of Metal Support Interaction on Ripening Kinetics of Supported Particles, ChemNanoMat, 2018, 4, 510~517.
10) Sulei Hu#, Runhai Ouyang#, Wei-Xue Li*, First-Principles Kinetics Study of Carbon Monoxide Promoted Ostwald Ripening of Au Particles on FeO/Pt(111), J. Energy Chem., 2018, 30, 108~113.
11) Qixin Wan#, Sulei Hu#, Jiangnan Dai, Changqing Chen*, Wei-Xue Li*, First-principles Kinetic Study for Ostwald Ripening of Late Transition Metals on TiO2(110), J. Phys. Chem. C, 2019, 123, 1160-1169.
12) Qixin Wan#, Sulei Hu#, Jiangnan Dai, Changqing Chen*, Wei-Xue Li*, Influence of Crystal Facet and Phase of Titanium Dioxide on Ostwald Ripening of Supported Pt Nanoparticles from First-Principles Kinetics, J. Phys. Chem. C, 2019, 123, 11020-11026.
13) Kun Yang, Sulei Hu, YuJie Ban, Yingwu Zhou, Na Cao, Meng Zhao, Yifei Xiao, Wei-Xue Li, Weishen Yang, ZIF-L membrane with a membrane -interlocked-support composite architecture for H2/CO2 separation, Sci. Bull., 2021, 66, 1869-1876.
14) Jing Zhu, Sulei Hu, Zhenhua Zeng, Wei-Xue Li; First-Principles Investigation of Electrochemical Dissolution of Pt Nanoparticles and Kinetic Simulation, J. Chem. Phys. 2019, 151, 234711-9.
15) Tairan Wang, Jiancong Li, Wu Shu, Sulei Hu, Runhai Ouyang, Wei-Xue Li, Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening, Chin. J. Phys. Chem. 2020, 33, 703.
16) JunJu Xue, JianYu Hu, Jie Luo, Sulei. Hu*, Wei-Xue. Li*, Molecular Dynamics Study of OH-Induced Disintegration of Cu/ZnO Catalysts Based on Machine Learning Potentials, Chinese Journal of Chemical Physics 2025, (Accepted)
17) Jianyu Hu, Junyi Yang, Sulei Hu, Jinxun Liu, Wei-Xue Li, Interpretable machine learning-assisted development of catalytic science theory, Sci. Sin. Chim. 2025, 55.
18) Spatial segregation of three-dimensional Al2O3 supported PtSn catalyst for improved sintering-resistant at high, temperature, Zhun Zhang#, Congcong Du#, Haowen Li#, Jianyu Hu, Fan Yang, Jianyu Huang, Sulei Hu, Wei-Xue Li*, Haifeng Xiong*, Appl. Catal. B Environ, 2024, 358, 124334.