针对微纳尺度物质科学中多尺度、多层次、多机制及强耦合的动力学演化特征,为突破单一尺度模拟局限,以负载纳米粒子奥斯特瓦尔德熟化和粒子迁移与团簇为典型对象,构建贯穿“高保真模拟—特征提取—公式发现—逆向设计”的全链条物理-人工智能融合研究范式。
一、 特征提取:多源数据生成与高维空间抽象
面向团簇结构图数据、方程演化数据及非稳态非平均模拟数据,建立高保真数据生成与智能降维提取体系:
模拟数据生成: 综合利用差分法、有限元模拟及基于柯尔莫哥洛夫-阿诺德网络、小波分析、物理信息神经网络的算法,生成奥斯特瓦尔德熟化和粒子迁移与团簇过程的非稳态、非平均场动力学模拟数据。针对含全局积分项的积分微分方程,采用基于贪心构造快照子空间正交基表示的物理信息神经网络算法。
多维特征抽象: 针对原子结构图像、时间分辨电镜及谱学数据,发展基于傅立叶特征嵌入或小波分析的特征抽象算法。
降维与解耦: 利用基于柯尔莫哥洛夫-阿诺德网络、线图及原子图神经网络,对分子、局域环境及特征空间进行降维、解耦、聚类及拓扑特征提取;面向动态标度复杂系统,部署弱涌现特征的智能提取算法。
二、 公式构建:多层次符号发现与算符复合
基于提取的高维特征,通过确定性筛选与智能进化策略,构建多层次符号公式发现体系:
搜索与筛选策略: 采用基于确定性独立筛选、蚁群算法、树搜索及并行加速技术的符号公式发现算法。
聚类与分组构建: 实施基于线性相关性、互信息、纠缠熵等特征相似度的聚类分组策略,实现多层次公式构建。
大模型驱动与推理: 利用大语言模型驱动符号公式自动发现,结合反事实推理进化算法,实现物理规律的挖掘。
复杂算符与流形构造: 实现特殊函数项、张量高级算符、图符号复合、矩阵降维及神经符号梯度的处理,支持多机制切换与多尺度耦合;发展基于微分流形或层论的切空间间联络智能构造算法。
三、 方程演化:理论核心、约束与统一描述
将发现的物理方程作为核心约束与渐近解,建立跨尺度的统一物理描述模型:
稳定性与化学势模型: 建立基于图和符号的纳米粒子原子稳定性模型,涵盖组分、载体、尺寸、配位环境及动态气氛竞争活化机制;构建由金属-载体相互作用决定的纳米粒子化学势统一公式,涵盖经典与反常尺寸依赖关系。
动力学标度律: 针对粒子迁移与团簇过程,确立尺寸、阶数、弛豫时间及分布的瞬时动态标度律与全局解析解。
统一理论描述: 基于微分流形理论及奥斯特瓦尔德熟化、粒子迁移与团簇的平均场方程,实现对尺寸及其分布时间演化轨迹的统一描述。
四、 预测与生成:基于流匹配的逆向设计
基于物理控制方程与流匹配生成式模型,实现材料结构与演化机制的逆向设计:
结构与公式生成: 运用基于流匹配的生成式模型,实现可合成分子结构的条件生成,以及可解释公式树和表达式的生成。
动力学逆向设计: 针对粒子尺寸分布演化动力学曲线簇,利用流匹配算法进行逆向生成、演化机制归属分析及关键物理参数识别。
发表论文
1) Tairan Wang#, Jianyu Hu#, Runhai Ouyang#, Yutao Wang, Yi Huang, Sulei Hu and Wei-Xue Li., Nature of metal-support interaction for metal catalysts on oxide supports, Science, 2024, 386, 915-920.
2) Sulei Hu, Wei-Xue Li*, Sabatier principle of metal–support interaction for design of ultrastable metal nanocatalysts, Science, 2021, 374, 1360-1365..
3) Peng Yin#, Sulei Hu#, Kun Qian, Zeyue Wei, Le-Le Zhang, Yue Lin*, Weixin Huang, Haifeng Xiong, Wei-Xue Li*, Hai-Wei Liang*, Quantification of “safe” inter-particle distance for mitigating catalyst sintering, Nat. Commun., 2021, 12, 4865.
4) Siyan Cao, Xuting Chai, Sulei Hu*, Wei-Xue Li*, First-Principles Study of Oxygen-Induced Disintegration and Ripening of Late Transition Metal Nanoparticles on Rutile-TiO2(110), J. Phys. Chem. C 2022, 126, 8056-8064.
5) Shiyan Cao, Sulei Hu* and Wei-Xue Li*., First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110), Chinese Journal of Chemical Physics, 2023, 36, 411-418.
6) Yancai Yao#, Sulei Hu#, Wenxing Chen#, Zheng-Qing Huang, Weichen Wei, Tao Yao, Ruirui Liu, Ketao Zang, Xiaoqian Wang, Geng Wu, Wenjuan Yuan, Tongwei Yuan, Baiquan Zhu, Wei Liu, Zhijun Li, Dongsheng He, Zhenggang Xue, Yu Wang, Xusheng Zheng, Juncai Dong, Chun-Ran Chang, Yanxia Chen, Xun Hong, Jun Luo, Shiqiang Wei, Wei-Xue Li*, Peter Strasser, Yuen Wu*, Yadong Li, Engineering the Electronic Structure of Single Atomic Ru Sites via Compressive Strain Boosts Acidic Water Oxidation Electrocatalysis, Nat. Catal., 2019, 2, 304-313.
7) Sulei Hu, Wei-Xue Li, Metal Support Interaction Controlled Migration and Coalescence of Supported Particles, Sci. China Tech. Sci., 2019, 62, 762.
8) Sulei Hu, Wei-Xue Li*, Influence of Particle Size Distribution on Half-Life Time and Onset Temperature of Ostwald Ripening of Supported Particles, ChemCatChem, 2018, 10, 2900~2907.
9) Sulei Hu, Wei-Xue Li*, Theoretical Investigation of Metal Support Interaction on Ripening Kinetics of Supported Particles, ChemNanoMat, 2018, 4, 510~517.
10) Sulei Hu#, Runhai Ouyang#, Wei-Xue Li*, First-Principles Kinetics Study of Carbon Monoxide Promoted Ostwald Ripening of Au Particles on FeO/Pt(111), J. Energy Chem., 2018, 30, 108~113.
11) Qixin Wan#, Sulei Hu#, Jiangnan Dai, Changqing Chen*, Wei-Xue Li*, First-principles Kinetic Study for Ostwald Ripening of Late Transition Metals on TiO2(110), J. Phys. Chem. C, 2019, 123, 1160-1169.
12) Qixin Wan#, Sulei Hu#, Jiangnan Dai, Changqing Chen*, Wei-Xue Li*, Influence of Crystal Facet and Phase of Titanium Dioxide on Ostwald Ripening of Supported Pt Nanoparticles from First-Principles Kinetics, J. Phys. Chem. C, 2019, 123, 11020-11026.
13) Kun Yang, Sulei Hu, YuJie Ban, Yingwu Zhou, Na Cao, Meng Zhao, Yifei Xiao, Wei-Xue Li, Weishen Yang, ZIF-L membrane with a membrane -interlocked-support composite architecture for H2/CO2 separation, Sci. Bull., 2021, 66, 1869-1876.
14) Jing Zhu, Sulei Hu, Zhenhua Zeng, Wei-Xue Li; First-Principles Investigation of Electrochemical Dissolution of Pt Nanoparticles and Kinetic Simulation, J. Chem. Phys. 2019, 151, 234711-9.
15) Tairan Wang, Jiancong Li, Wu Shu, Sulei Hu, Runhai Ouyang, Wei-Xue Li, Machine-Learning Adsorption on Binary Alloy Surfaces for Catalyst Screening, Chin. J. Phys. Chem. 2020, 33, 703.
16) JunJu Xue, JianYu Hu, Jie Luo, Sulei. Hu*, Wei-Xue. Li*, Molecular Dynamics Study of OH-Induced Disintegration of Cu/ZnO Catalysts Based on Machine Learning Potentials, Chinese Journal of Chemical Physics 2025, (Accepted)
17) Jianyu Hu, Junyi Yang, Sulei Hu, Jinxun Liu, Wei-Xue Li, Interpretable machine learning-assisted development of catalytic science theory, Sci. Sin. Chim. 2025, 55.
18) Zhun Zhang#, Congcong Du#, Haowen Li#, Jianyu Hu, Fan Yang, Jianyu Huang, Sulei Hu, Wei-Xue Li*, Haifeng Xiong*, Spatial segregation of three-dimensional Al2O3 supported PtSn catalyst for improved sintering-resistant at high, temperature, Appl. Catal. B Environ, 2024, 358, 124334.
19) Hu, S., Li, WX*. A data-driven leap towards stable catalysts. Nat Catal 8, 981–983 (2025). https://doi.org/10.1038/s41929-025-01428-0.
20) Xingen Lin, Peigen Liu, Jie Zheng, Jie Xu, Zihan Wang, Zhixuan Chen, Ze Lin, Xusheng Zheng, Xin Wang, Xianhui Ma, Dayin He, Xuyan Zhao, Ge Yu, Junmin Li, Sulei Hu*, Huang Zhou*, Wei-Xue Li* & Yuen Wu*, Electronic tuning of RuO₂ polarizes metal–oxygen redox for proton exchange membrane water electrolysis. Nat Commun 16, 8709 (2025). https://doi.org/10.1038/s41467-025-63721-7

