Conditional stability in a backward Cahn-Hilliard equation via a Carleman estimate
Hits:
Impact Factor:1.1
DOI number:10.1515/jiip-2017-0082
Journal:Journal of Inverse and Ill-Posed Problems
Key Words:Cahn-Hilliard equation; backward problem; Carleman estimate; conditional stability
Abstract:We consider a Cahn-Hilliard equation in a bounded domain Omega in R-n over a time interval (0, T) and discuss the backward problem in time of determining intermediate data u(x, theta), theta epsilon (0, T), x epsilon Omega from the measurement of the final data u(x, T), x epsilon Omega. Under suitable a priori boundness assumptions on the solutions u(x, t), we prove a conditional stability estimate for the semilinear Cahn-Hilliard equation
parallel to u(., theta)parallel to(L2(Omega)) <= C parallel to u(., T)parallel to(kappa 0)(H2(Omega)),
and a conditional stability estimate for the linear Cahn-Hilliard equation
parallel to u(., theta)parallel to(H beta(Omega)) <= C parallel to u(. , T)parallel to(kappa 1)(H2(Omega)),
where theta epsilon (0, T), beta epsilon (0, 4) and kappa(0), kappa(1) epsilon (0, 1). The proof is based on a Carleman estimate with the weight function e(2se lambda t) with large parameters s, lambda epsilon R^+.
Co-author:Shumin Li
First Author:Yunxia Shang
Indexed by:Journal paper
Document Code:000635601700001
Discipline:Natural Science
Document Type:J
Volume:29
Issue:2
Page Number:159-171
ISSN No.:0928-0219
Translation or Not:no
Date of Publication:2021-04-01
Included Journals:SCI、EI
Links to published journals:https://www.degruyter.com/document/doi/10.1515/jiip-2017-0082/html
-
|
OfficePhone:57b43fa6e7b612d5244b37201a9f171589cfd57841167ab5b230e3495f698f291b413c8c5522b3254ca29f061e7f5a80ab7a1db83e585869fccb808c39e260215170db5375d84ba1c25c7e3cea8f907e8b15caba2000f3f141ab4e04209b1b0cf52ab0d10a4408bafcbc1b618418f80a320fafd58cf12c2edb682b302d1b98b9
Telephone:6aeea512d05f7a0a5e3f2232519667918f7c5f79c0910cc2267d3ac5397b59c3f55f8acf89fec652698eba24a885a4aa9196bbc2f93621677151c846edf7f9b6d4e84f7d793b92b401b7ee3c615674cc8d190b39ca8d3d2b95de3c3547bc4ee6a1979c502f5a91b7efa7fe826dc6a77b86d95fb9b8aa5d9359afbc67655d8521
Email:0886f7259069dfa067946d8a60830b27283cdb95dbfee0c032756a09a3013842a91877f6a96bb9311f5158cd107a4f2964fb111b6209f82388406bb9bc1794c6e2c1a1735e4d3e43450cee2375ffe44a862bc5eefd3b2e39743079ab2bbd6212f0c29bc692e0785938f4d381a7e771513180658ff38c52e368bac4c7dacca5c2
|