Lipschitz stability for an inverse hyperbolic problem of determining two coefficients by a finite number of observations
Hits:
Impact Factor:2.1
DOI number:10.1088/1361-6420/aa941d
Journal:Inverse Problems
Key Words:coefficient inverse problem; Carleman estimate; an acoustic equation of hyperbolic type; two space-dependent coefficients; adaptive algorithm
Abstract:We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.
Co-author:L Beilina,M Cristofol,S Li,M Yamamoto
Indexed by:Journal paper
Document Code:000428757900001
Discipline:Natural Science
Document Type:J
Volume:34
Issue:1
Page Number:015001
ISSN No.:0266-5611
Translation or Not:no
Date of Publication:2018-01-01
Included Journals:SCI、EI
Links to published journals:https://iopscience.iop.org/article/10.1088/1361-6420/aa941d
-
|
OfficePhone:57b43fa6e7b612d5244b37201a9f171589cfd57841167ab5b230e3495f698f291b413c8c5522b3254ca29f061e7f5a80ab7a1db83e585869fccb808c39e260215170db5375d84ba1c25c7e3cea8f907e8b15caba2000f3f141ab4e04209b1b0cf52ab0d10a4408bafcbc1b618418f80a320fafd58cf12c2edb682b302d1b98b9
Telephone:6aeea512d05f7a0a5e3f2232519667918f7c5f79c0910cc2267d3ac5397b59c3f55f8acf89fec652698eba24a885a4aa9196bbc2f93621677151c846edf7f9b6d4e84f7d793b92b401b7ee3c615674cc8d190b39ca8d3d2b95de3c3547bc4ee6a1979c502f5a91b7efa7fe826dc6a77b86d95fb9b8aa5d9359afbc67655d8521
Email:0886f7259069dfa067946d8a60830b27283cdb95dbfee0c032756a09a3013842a91877f6a96bb9311f5158cd107a4f2964fb111b6209f82388406bb9bc1794c6e2c1a1735e4d3e43450cee2375ffe44a862bc5eefd3b2e39743079ab2bbd6212f0c29bc692e0785938f4d381a7e771513180658ff38c52e368bac4c7dacca5c2
|