Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by partial boundary layer data. Part II: Some inverse problems
Hits:
Impact Factor:2.9
DOI number:10.1002/mma.9252
Journal:Mathematical Methods in the Applied Sciences
Key Words:Carleman estimates; hyperbolic-parabolic equations; inverse problems; strong coupling; thermoacoustic equations
Abstract:This paper is concerned with the determination of coefficients and source term in a strong coupled quantitative thermoacoustic system of equations. Adapting a Carleman estimate established in the part I of this series of papers, we prove stability estimates of Holder type involving the observation of only one component: the temperature or the pressure.
Co-author:Michel Cristofol,Shumin Li,Yunxia Shang
Indexed by:Journal paper
Document Code:000962663800001
Discipline:Natural Science
Document Type:J
Volume:46
Issue:12
Page Number:13304–13319
ISSN No.:0170-4214
Translation or Not:no
Included Journals:SCI、EI
Links to published journals:http://doi.org/10.1002/mma.9252
-
|
OfficePhone:57b43fa6e7b612d5244b37201a9f171589cfd57841167ab5b230e3495f698f291b413c8c5522b3254ca29f061e7f5a80ab7a1db83e585869fccb808c39e260215170db5375d84ba1c25c7e3cea8f907e8b15caba2000f3f141ab4e04209b1b0cf52ab0d10a4408bafcbc1b618418f80a320fafd58cf12c2edb682b302d1b98b9
Telephone:6aeea512d05f7a0a5e3f2232519667918f7c5f79c0910cc2267d3ac5397b59c3f55f8acf89fec652698eba24a885a4aa9196bbc2f93621677151c846edf7f9b6d4e84f7d793b92b401b7ee3c615674cc8d190b39ca8d3d2b95de3c3547bc4ee6a1979c502f5a91b7efa7fe826dc6a77b86d95fb9b8aa5d9359afbc67655d8521
Email:0886f7259069dfa067946d8a60830b27283cdb95dbfee0c032756a09a3013842a91877f6a96bb9311f5158cd107a4f2964fb111b6209f82388406bb9bc1794c6e2c1a1735e4d3e43450cee2375ffe44a862bc5eefd3b2e39743079ab2bbd6212f0c29bc692e0785938f4d381a7e771513180658ff38c52e368bac4c7dacca5c2
|