Local logarithmic stability of an inverse coefficient problem for a singular heat equation with an inverse-square potential
Hits:
DOI number:10.1080/00036811.2021.2011246
Journal:Applicable Analysis
Key Words:Singular heat equation; logarithmic stability; inverse coefficient problem
Abstract:An inverse problem of the determination of the coefficient P(x) in the equation: partial derivative(t)u(x, t)- del . (P(x)del u) - mu/vertical bar x vertical bar(2) u(x, t) = 0, (x, t) is an element of Omega x (0, T) is considered. The main difficulty here as compared with the existing result is that there is a singular potential in the equation. A local logarithmic stability estimate is obtained using the method of Carleman estimates. Our proof relies on the Bukhgeim-Klibanov method which was originated in [Bukhgeim AL, Klibanov MV. Uniqueness in the large of a class of multidi-imensional inverse problems. Dokl Akad Nauk SSSR. 1981;17:244-247] to prove inverse source or coefficient results.
Co-author:Shumin Li
First Author:Xue Qin
Indexed by:Journal paper
Document Code:000729715100001
Discipline:Natural Science
Document Type:J
Volume:102
Issue:7
Page Number:1995–2017
ISSN No.:0003-6811
Translation or Not:no
Date of Publication:2023-05-03
Included Journals:SCI
Links to published journals:https://www.tandfonline.com/doi/full/10.1080/00036811.2021.2011246
-
|
OfficePhone:57b43fa6e7b612d5244b37201a9f171589cfd57841167ab5b230e3495f698f291b413c8c5522b3254ca29f061e7f5a80ab7a1db83e585869fccb808c39e260215170db5375d84ba1c25c7e3cea8f907e8b15caba2000f3f141ab4e04209b1b0cf52ab0d10a4408bafcbc1b618418f80a320fafd58cf12c2edb682b302d1b98b9
Telephone:6aeea512d05f7a0a5e3f2232519667918f7c5f79c0910cc2267d3ac5397b59c3f55f8acf89fec652698eba24a885a4aa9196bbc2f93621677151c846edf7f9b6d4e84f7d793b92b401b7ee3c615674cc8d190b39ca8d3d2b95de3c3547bc4ee6a1979c502f5a91b7efa7fe826dc6a77b86d95fb9b8aa5d9359afbc67655d8521
Email:0886f7259069dfa067946d8a60830b27283cdb95dbfee0c032756a09a3013842a91877f6a96bb9311f5158cd107a4f2964fb111b6209f82388406bb9bc1794c6e2c1a1735e4d3e43450cee2375ffe44a862bc5eefd3b2e39743079ab2bbd6212f0c29bc692e0785938f4d381a7e771513180658ff38c52e368bac4c7dacca5c2
|