Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates
Hits:
Impact Factor:1.1
DOI number:10.1515/jiip-2020-0045
Journal:Journal of Inverse and Ill-Posed Problems
Key Words:Carleman estimates; thermoacoustic equations; coupled; inverse problems
Abstract:In this paper, we consider Carleman estimates and inverse problems for the coupled quantitative thermoacoustic equations. In part I, we establish Carleman estimates for the coupled quantitative thermoacoustic equations by assuming that the coefficients satisfy suitable conditions and taking the usual weight function φ(x, t) = e^{λψ(x,t)}, ψ(x, t) = |x − x_0|^2 − β|t − t_0|^2 + βt^2_0 for x in a bounded domain in ℝn with C^3-boundary and t ∈ (0, T), where t0 =T/2. We will discuss applications of the Carleman estimates to some inverse problems for the coupled quantitative thermoacoustic equations in the succeeding part II paper [M. Cristofol, S. Li and Y. Shang, Carleman estimates and inverse problems for the coupled quantitative thermoacoustic equations. Part II: Inverse problems, preprint (2020), https://hal.archives-ouvertes.fr/hal-02863385].
Co-author:Shumin Li,Yunxia Shang
Indexed by:Journal paper
Document Code:000762443900001
Discipline:Natural Science
Document Type:J
Volume:30
Issue:5
Page Number:621-658
ISSN No.:0928-0219
Translation or Not:no
Date of Publication:2022-10-01
Included Journals:SCI、EI
Links to published journals:https://doi.org/10.1515/jiip-2020-0045
-
|
OfficePhone:57b43fa6e7b612d5244b37201a9f171589cfd57841167ab5b230e3495f698f291b413c8c5522b3254ca29f061e7f5a80ab7a1db83e585869fccb808c39e260215170db5375d84ba1c25c7e3cea8f907e8b15caba2000f3f141ab4e04209b1b0cf52ab0d10a4408bafcbc1b618418f80a320fafd58cf12c2edb682b302d1b98b9
Telephone:6aeea512d05f7a0a5e3f2232519667918f7c5f79c0910cc2267d3ac5397b59c3f55f8acf89fec652698eba24a885a4aa9196bbc2f93621677151c846edf7f9b6d4e84f7d793b92b401b7ee3c615674cc8d190b39ca8d3d2b95de3c3547bc4ee6a1979c502f5a91b7efa7fe826dc6a77b86d95fb9b8aa5d9359afbc67655d8521
Email:0886f7259069dfa067946d8a60830b27283cdb95dbfee0c032756a09a3013842a91877f6a96bb9311f5158cd107a4f2964fb111b6209f82388406bb9bc1794c6e2c1a1735e4d3e43450cee2375ffe44a862bc5eefd3b2e39743079ab2bbd6212f0c29bc692e0785938f4d381a7e771513180658ff38c52e368bac4c7dacca5c2
|