个人信息Personal Information
副教授
硕士生导师
教师英文名称:Shumin Li
教师拼音名称:Li Shumin
电子邮箱:
学历:博士研究生毕业
学位:博士
毕业院校:东京大学
Local logarithmic stability of an inverse coefficient problem for a singular heat equation with an inverse-square potential
点击次数:
DOI码:10.1080/00036811.2021.2011246
发表刊物:Applicable Analysis
关键字:Singular heat equation; logarithmic stability; inverse coefficient problem
摘要:An inverse problem of the determination of the coefficient P(x) in the equation: partial derivative(t)u(x, t)- del . (P(x)del u) - mu/vertical bar x vertical bar(2) u(x, t) = 0, (x, t) is an element of Omega x (0, T) is considered. The main difficulty here as compared with the existing result is that there is a singular potential in the equation. A local logarithmic stability estimate is obtained using the method of Carleman estimates. Our proof relies on the Bukhgeim-Klibanov method which was originated in [Bukhgeim AL, Klibanov MV. Uniqueness in the large of a class of multidi-imensional inverse problems. Dokl Akad Nauk SSSR. 1981;17:244-247] to prove inverse source or coefficient results.
合写作者:李书敏
第一作者:秦雪
论文类型:期刊论文
论文编号:000729715100001
学科门类:理学
文献类型:J
卷号:102
期号:7
页面范围:1995–2017
ISSN号:0003-6811
是否译文:否
发表时间:2023-05-03
收录刊物:SCI
发布期刊链接:https://www.tandfonline.com/doi/full/10.1080/00036811.2021.2011246
上一条:Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by partial boundary layer data. Part II: Some inverse problems
下一条:Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates