个人信息Personal Information
副教授
硕士生导师
教师英文名称:Shumin Li
电子邮箱:
学历:博士研究生毕业
学位:博士
毕业院校:东京大学
Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates
点击次数:
影响因子:1.1
DOI码:10.1515/jiip-2020-0045
发表刊物:Journal of Inverse and Ill-Posed Problems
关键字:Carleman estimates; thermoacoustic equations; coupled; inverse problems
摘要:In this paper, we consider Carleman estimates and inverse problems for the coupled quantitative thermoacoustic equations. In part I, we establish Carleman estimates for the coupled quantitative thermoacoustic equations by assuming that the coefficients satisfy suitable conditions and taking the usual weight function φ(x, t) = e^{λψ(x,t)}, ψ(x, t) = |x − x_0|^2 − β|t − t_0|^2 + βt^2_0 for x in a bounded domain in ℝn with C^3-boundary and t ∈ (0, T), where t0 =T/2. We will discuss applications of the Carleman estimates to some inverse problems for the coupled quantitative thermoacoustic equations in the succeeding part II paper [M. Cristofol, S. Li and Y. Shang, Carleman estimates and inverse problems for the coupled quantitative thermoacoustic equations. Part II: Inverse problems, preprint (2020), https://hal.archives-ouvertes.fr/hal-02863385].
合写作者:李书敏,尚云侠
论文类型:期刊论文
论文编号:000762443900001
学科门类:理学
文献类型:J
卷号:30
期号:5
页面范围:621-658
ISSN号:0928-0219
是否译文:否
发表时间:2022-10-01
收录刊物:SCI、EI