李书敏

个人信息Personal Information

副教授

硕士生导师

教师英文名称:Shumin Li

电子邮箱:

学历:博士研究生毕业

学位:博士

毕业院校:东京大学

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

The null controllability for a singular heat equation with variable coefficients

点击次数:

影响因子:1.1

DOI码:10.1080/00036811.2020.1769076

发表刊物:Applicable Analysis

关键字:Singular heat equation; null controllability; Carleman estimate; observability

摘要:The goal of this paper is to analyze control properties of the parabolic equation with variable coefficients in the principal part and with a singular inverse-square potential: ∂_tu(x, t) − div(p(x)∇u (x, t)) − (μ/|x|^2) u (x, t) = f (x, t). Here μ is a real constant. It was proved in the paper of Goldstein and Zhang (8) that the equation is well-posedness when 0 ≤ μ ≤ p_1(n − 2)^2/4, and in this paper, we mainly consider the case 0 ≤ μ<(p^2_1/p_2)(n −2)^2/4, where p_1, p_2 are two positive constants which satisfy: 0 < p_1 ≤ p(x) ≤ p_2, ∀ x ∈ Ω. We extend the specific Carleman estimates in the paper of Ervedoza [Control and stabilization properties for a singular heat equation with an inverse-square potential. Commun Partial Differ Equ. 2008;33:1996–2019] and Vancostenoble [Lipschitz stability in inverse source problems for singular parabolic equations. Commun Partial Differ Equ. 2011;36(8):1287–1317] to the system. We obtain that we can control the equation from any non-empty open subset as for the heat equation. Moreover, we will study the case μ > p_2(n − 2)^2/4. We consider a sequence of regularized potentials μ/(|x|^2 + ε^2), and prove that we cannot stabilize the corresponding systems uniformly with respect to ε> 0.

合写作者:李书敏

第一作者:秦雪

论文类型:期刊论文

论文编号:000537939600001

学科门类:理学

文献类型:J

卷号:101

期号:3

页面范围:1052-1076

ISSN号:0003-6811

是否译文:

发表时间:2022-02-11

收录刊物:SCI

发布期刊链接:https://www.tandfonline.com/eprint/CJUBMW2MGIDP5EIXNUIC/full?target=10.1080/00036811.2020.1769076