李书敏

个人信息Personal Information

副教授

硕士生导师

教师英文名称:Shumin Li

教师拼音名称:Li Shumin

电子邮箱:

学历:博士研究生毕业

学位:博士

毕业院校:东京大学

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Conditional stability in a backward Cahn-Hilliard equation via a Carleman estimate

点击次数:

影响因子:1.1

DOI码:10.1515/jiip-2017-0082

发表刊物:Journal of Inverse and Ill-Posed Problems

关键字:Cahn-Hilliard equation; backward problem; Carleman estimate; conditional stability

摘要:We consider a Cahn-Hilliard equation in a bounded domain Omega in R-n over a time interval (0, T) and discuss the backward problem in time of determining intermediate data u(x, theta), theta epsilon (0, T), x epsilon Omega from the measurement of the final data u(x, T), x epsilon Omega. Under suitable a priori boundness assumptions on the solutions u(x, t), we prove a conditional stability estimate for the semilinear Cahn-Hilliard equation parallel to u(., theta)parallel to(L2(Omega)) <= C parallel to u(., T)parallel to(kappa 0)(H2(Omega)), and a conditional stability estimate for the linear Cahn-Hilliard equation parallel to u(., theta)parallel to(H beta(Omega)) <= C parallel to u(. , T)parallel to(kappa 1)(H2(Omega)), where theta epsilon (0, T), beta epsilon (0, 4) and kappa(0), kappa(1) epsilon (0, 1). The proof is based on a Carleman estimate with the weight function e(2se lambda t) with large parameters s, lambda epsilon R^+.

合写作者:李书敏

第一作者:尚云侠

论文类型:期刊论文

论文编号:000635601700001

学科门类:理学

文献类型:J

卷号:29

期号:2

页面范围:159-171

ISSN号:0928-0219

是否译文:

发表时间:2021-04-01

收录刊物:SCI、EI

发布期刊链接:https://www.degruyter.com/document/doi/10.1515/jiip-2017-0082/html