个人信息Personal Information
副教授
硕士生导师
教师英文名称:Shumin Li
电子邮箱:
学历:博士研究生毕业
学位:博士
毕业院校:东京大学
Conditional stability in a backward Cahn-Hilliard equation via a Carleman estimate
点击次数:
影响因子:1.1
DOI码:10.1515/jiip-2017-0082
发表刊物:Journal of Inverse and Ill-Posed Problems
关键字:Cahn-Hilliard equation; backward problem; Carleman estimate; conditional stability
摘要:We consider a Cahn-Hilliard equation in a bounded domain Omega in R-n over a time interval (0, T) and discuss the backward problem in time of determining intermediate data u(x, theta), theta epsilon (0, T), x epsilon Omega from the measurement of the final data u(x, T), x epsilon Omega. Under suitable a priori boundness assumptions on the solutions u(x, t), we prove a conditional stability estimate for the semilinear Cahn-Hilliard equation parallel to u(., theta)parallel to(L2(Omega)) <= C parallel to u(., T)parallel to(kappa 0)(H2(Omega)), and a conditional stability estimate for the linear Cahn-Hilliard equation parallel to u(., theta)parallel to(H beta(Omega)) <= C parallel to u(. , T)parallel to(kappa 1)(H2(Omega)), where theta epsilon (0, T), beta epsilon (0, 4) and kappa(0), kappa(1) epsilon (0, 1). The proof is based on a Carleman estimate with the weight function e(2se lambda t) with large parameters s, lambda epsilon R^+.
合写作者:李书敏
第一作者:尚云侠
论文类型:期刊论文
论文编号:000635601700001
学科门类:理学
文献类型:J
卷号:29
期号:2
页面范围:159-171
ISSN号:0928-0219
是否译文:否
发表时间:2021-04-01
收录刊物:SCI、EI
发布期刊链接:https://www.degruyter.com/document/doi/10.1515/jiip-2017-0082/html