Efficient visible light photocatalysis enabled by the interaction between dual cooperative defect sites
Hits:
DOI number:10.1016/j.apcatb.2020.119099
Journal:Applied Catalysis B: Environmental
Key Words:Dual defect;Nitrogen defects;Single-site copper;Long-wavelength visible light;Photocatalytic hydrogen production
Abstract:Modifying photocatalyst with defects offers effective pathway to tailor light absorption properties, but may result in more sluggish kinetics. Therefore, enhanced light absorption often could not guarantee increased activity. Here, we report a dual defect strategy to extend light absorption with minimal loss in charge dynamics. Fine-tuned amount of dual defect, i.e., nitrogen defects and single-site copper, is simultaneously generated in polymer carbon nitride(PCN) through in-situ vapor diffusion method. Surface nitrogen defect extends the light absorption to long-wavelength via sub-band absorption. The interaction between nitrogen and single-site copper at certain concentration retains the charge dynamics by making the photogenerated electrons more delocalized through the newly-formed copper-nitrogen bonds. As a result, champion modified PCN exhibits robust hydrogen production activity, roughly 4.5-fold greater than the pristine counterpart in both visible and full light ranges. More intriguingly, this synergism provides PCN with efficient visible light activity even in faint tailing optical absorption region(>450 nm).
Co-author:Pengfei Yu, Jiachen Zhange, Weiqi Guo, Yaoyu He, Hajime Hojo, Hisahiro Einaga, Wenfeng Shangguan
First Author:Rongjie Qi
Correspondence Author:Qun Zhang,Xiaosong Liu,Zhi Jiang
Document Code:119099
Volume:274
ISSN No.:0926-3373
Translation or Not:no
Date of Publication:2020-10-05
Links to published journals:https://doi.org/10.1016/j.apcatb.2020.119099
-
|
ZipCode:6ecf516b0e64e49898151228b3521c6404d1d0d229ac6297637d793502e4ac4d001775ce8bf8f9ccbd11c1876951bc2c4f60aace33a1f499265e061e13812b5e513c5d0c21ebc2988c726ce14fe9eb8bf1faa736b1aab211806fe850c6346b4e2d45f004dc52014fe08c3a31d9112e27bb58eca35cabc161d5ba78489b204ac9
PostalAddress:01ff0fc6306481f180c432d47cf92d995bf51adad9d69e5c64ffa481add8e2151f8d1a2adc4b569ab1a976dc43b9c3f93a3fa4def56c096d3aa94c01ed57a2eb8209548adf3422524ca56c5d0c395230935cb31dfe103552a8ed254e4ff527632d7664c515d4407fb4e09496510a80fdbfaf165fcc290263530f0b84492ccd08
OfficePhone:9ec8090c724edb00e65264d29e467883c687120725ab05c6325d67c9e63c317fac058c5a3a1052b4e9bf56f7ed6fa0711a506d6466900699f1352d516362820c8e24815db6fd5528cc77409baa78ab3c193c455f1ae8b2fa5db5e3670dfd44c783475458bc9da59f775aaa8bb9be40dc9a6fefa5502bf1dcb824240f35b47f86
Email:a66c01a07b3cb2c2ae994b73116b949151ceae686ddae3fcaf06aab8ad668926196c8b733b71fc5804c184f5570ec09f77fbf17fc92ae5f66c66c4567dfd3e52daaa26fdeb0c8617250c2b3f09a0cf9547723029a0deca22bb9b34fa78adcad45ca59195bda973da9772574bcda250f6e10728cc0e8910c9a51a9e05921468f8
|