Liu Yong
- Professor
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- Name (English):Yong Liu
- Name (Pinyin):Liu Yong
- E-Mail:
- Education Level:Postgraduate (Postdoctoral)
- Business Address:中国科学技术大学东区管理科研楼1518
- Contact Information:0551-63600572,18962265504
- Degree:Dr
- Professional Title:Professor
- Alma Mater:北京大学数学科学学院
- Teacher College:Mathematical Sciences
Contact Information
- Email:
- Paper Publications
- Hamel, François; Liu, Yong; Sicbaldi, Pieralberto; Wang, Kelei; Wei, Juncheng,Half-space theorems for the Allen-Cahn equation and related problems.J. Reine Angew. Math. 770 (2021), 113–133,
- Liu, Yong; Wang, Kelei; Wei, Juncheng,On smooth solutions to one phase-free boundary problem in Rn.Int. Math. Res. Not. IMRN(2021), no. 20, 15682–15732,
- Ao, Weiwei; Huang, Yehui; Liu, Yong; Wei, Juncheng,Generalized Adler-Moser polynomials and multiple vortex rings for the Gross-Pitaevskii equation.SIAM J. Math. Anal. 53 (2021), no. 6, 6959–6992,
- Liu, Yong; Wei, Juncheng,Multivortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials.SIAM J. Math. Anal. 52 (2020), no. 4, 3546–3579,
- Chen, Guoyuan; Liu, Yong; Wei, Juncheng,Nondegeneracy of harmonic maps from R^2 to S^2.Discrete Contin. Dyn. Syst. 40 (2020), no. 6, 3215–3233,
- Yong, Xuelin; Li, Xiaoyu; Huang, Yehui; Ma, Wen-Xiu; Liu, Yong,Rational solutions and lump solutions to the (3+1)-dimensional Mel'nikov equation.Modern Phys. Lett. B 34 (2020), no. 3, 2050033, 14 pp,
- Liu, Yong; Wei, Juncheng,Nondegeneracy, Morse index and orbital stability of the KP-I lump solution.Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1335–1389,
- Liu, Yong; Wei, Juncheng,On the Helmholtz equation and Dancer's-type entire solutions for nonlinear elliptic equations.Proc. Amer. Math. Soc. 147 (2019), no. 3, 1135–1148,
- Liu, Yong; Wei, Juncheng,Nondegeneracy of the traveling lump solution to the 2+1 Toda lattice.J. Math. Phys. 59 (2018), no. 10, 101501, 26 pp,
- Liu, Yong; Wang, Kelei; Wei, Juncheng,On a free boundary problem and minimal surfaces.Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 4, 993–1017,