Liu Yong
- Professor
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- Name (English):Yong Liu
- Name (Pinyin):Liu Yong
- E-Mail:
- Education Level:Postgraduate (Postdoctoral)
- Business Address:中国科学技术大学东区管理科研楼1518
- Contact Information:0551-63600572,18962265504
- Degree:Dr
- Professional Title:Professor
- Alma Mater:北京大学数学科学学院
- Teacher College:Mathematical Sciences
Contact Information
- Email:
- Paper Publications
- Yong, Xuelin; Ma, Wen-Xiu; Huang, Yehui; Liu, Yong,Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source.Comput. Math. Appl. 75 (2018), no. 9, 3414–3419,
- Liu, Yong; Wang, Kelei; Wei, Juncheng,Global minimizers of the Allen-Cahn equation in dimension n≥8.J. Math. Pures Appl. (9) 108 (2017), no. 6, 818–840,
- Cai, Liu-Ying; Wang, Xin; Wang, Lei; Li, Min; Liu, Yong; Shi, Yu-Ying,Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects.Nonlinear Dynam. 90 (2017), no. 3, 2221–2230,
- Gui, Changfeng; Liu, Yong; Wei, Juncheng,Two-end solutions to the Allen-Cahn equation in R^3.Adv. Math. 320 (2017), 926–992,
- Gui, Changfeng; Liu, Yong; Wei, Juncheng,On variational characterization of four-end solutions of the Allen-Cahn equation in the plane.J. Funct. Anal. 271 (2016), no. 10, 2673–2700,
- Kowalczyk, Michał; Liu, Yong; Pacard, Frank; Wei, Juncheng,End-to-end construction for the Allen-Cahn equation in the plane.Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 281–302,
- Kowalczyk, Michał; Liu, Yong; Wei, Juncheng,Singly periodic solutions of the Allen-Cahn equation and the Toda lattice.Comm. Partial Differential Equations 40 (2015), no. 2, 329–356,
- Kowalczyk, Michał; Liu, Yong; Pacard, Frank,Multiple end solutions to the Allen-Cahn equation in R^2.Éditions de l'École Polytechnique, Palaiseau, 2014, Exp. No. X, 19 pp. ISBN: 978-2-7302-1633-3,
- Kowalczyk, Michał; Liu, Yong; Pacard, Frank,The classification of four-end solutions to the Allen-Cahn equation on the plane.Anal. PDE 6 (2013), no. 7, 1675–1718,
- Liu, Yong,Radial solutions of a class of fully nonlinear elliptic equations.Adv. Differ. Equ. Control Process. 10 (2012), no. 2, 149–159,