shiyin
- Special Professor
- Supervisor of Doctorate Candidates
- Supervisor of Master's Candidates
- Name (English):Shi Yin
- Name (Pinyin):shiyin
- E-Mail:
- Education Level:With Certificate of Graduation for Doctorate Study
- Business Address:中科大西区科技楼
- Contact Information:shiyin@ustc.edu.cn
- Degree:Dr
- Professional Title:Special Professor
- Alma Mater:中科院上海光学精密机械研究所
- Teacher College:School of Nuclear Science and Technology
- Discipline:Physics
- PostalAddress:
- Email:
- Research Focus
激光等离子体物理,强场激光物理,高能量密度物理 (点击可了解详细内容)
在过去二十多年里,超高功率激光技术有了迅速的进展,催生了一批重要成果。为此,世界各科技强国都建造了或计划建造高强度大型激光装置,这包括中国在上海已建成的10拍瓦和计划建造的100拍瓦激光装置、欧洲的三个旗舰激光装置(极端光学装置ELI,Extreme Light Infrastructure)等。我的研究利用在国家超级计算机上运行的PIC(Particle-in-cell)模拟和相关理论来研究强激光与等离子体相互作用。相关结果的潜在应用包括粒子加速、X光辐射、自生磁场、可控核聚变和实验室天体物理等。更多背景见主页的“科学研究”。本小组也与国内外各大实验室建立有合作关系。
研究生课程学习主要涉及到:
(1)等离子物理(流体模型、动理学模型、各种波、电磁波在其中传输、辐射和输运等);本科是物理等相关专业的可以报考。
(2)高功率激光与物质相互作用(激光的波动和量子描述,高功率激光技术、超短超快激光技术、强激光与稀薄等离子体作用、强激光与固体等离子体作用、粒子加速和辐射等);本科是光电或光学等相关专业的可以报考。
(3)激光物质相互作用中的建模与模拟(流体、PIC、VFP模型,Fortran Or C++ Or python Or Matlab等,并行计算,机器学习);本科是计算机等相关专业的可以报考。
(4)激光等离子体相互作用中的诊断(质子照相、X光照相、汤姆逊散射成像等)。本科是光电等相关专业的可以报考。
Key words:
Laser-plasma interactions, electron acceleration, direct laser acceleration, vortex lasers, tight focusing, high-energy ps-pw lasers, X-rays, plasma wakefield acceleration, ion acceleration, relativistic mirrors, self-generated magnetic fields, (nonlinear) Thompson scattering, optical diagnostics, Plasma diagnostics, fast ignition ICF, plasma optics, strong field QED, coherent structure, laser (beam) plasma instabilities, proton imagination, HHG from laser solid plasma, OAM, PIC simulation, intense quantum light (photon kinetic theory), HED science, fast beam transport in plasma.
Vladimir Tikhonchuk’s Conclusion in the book of 《Particle Kinetics and Laser-Plasma Interactions》2023
The physics of laser-plasma interactions is a fast-developing domain of science. New ideas and exciting results appear every year. The aim of this book is to provide a solid background for people interested in participating in these research activities and making their own contributions, either in theory, numerical simulations, or experiments. This notion of a solid theoretical background guided me in choosing the subjects to cover and the examples to discuss. Many exciting results are not included in this work because either they are still evolving and need more time to be ready for review or simply because the domain is too large to cover in this book.
I would like to mention several promising topics that are omitted here. One is the interaction of multiple laser beams with plasma, excitation of plasma modes common to several incident beams, and interaction with plasmas of vector laser beams or beams with a complex wavefront. The overlapping of several laser beams is an indispensable feature of ICF experiments, which requires new developments in the physics of parametric instabilities and controlling the nonlinear effects. The laser beams carrying an orbital angular momentum, complex polarization, or temporal and spatial chirp have a strong potential that is already demonstrated in nonlinear optics, and they will soon be implemented in high-power and high-intensity laser facilities. The challenge is to understand how these new laser technologies may affect the laser-plasma interaction, the efficiency and quality of laser energy deposition, excitation and mitigation of parametric instabilities.
The physics of magnetic field generation, electron and ion acceleration in laser and plasma waves also merits a more detailed analysis and much better comprehension and characterization. Kinetic simulations with VFP and PIC codes show a complicated competition of collisional and collisionless processes that are not yet fully understood. The self-generated magnetic fields affect the energy spectrum of accelerated particles, angular distribution, and energy partition. This concerns the competition of electron and radiation transport in the high energy density physics experiments and also ion kinetics in high-temperature, high-density fusion plasmas. Many new impressive results will come in this area in the near future.
参考书目:
1) 《强场激光物理》沈百飞,科学出版社(2023);
2) 《Particle Kinetics and Laser-Plasma Interactions》,Vladimir Tikhonchuk 2023
3) 《A Superintense Laser-Plasma Interaction Theory Premier》 Andrea Macchi 2013;
4) 《Laser acceleration》T.Tajima et al, La Rivista del Nuovo Cimento 2017;
5) 《Unifying Physics of Accelerators, Lasers and Plasma》,Andrei Seryi 2015
6) 《The Physics of Laser Plasma Interactions》 William L. Kruer, Westview Press;
本团队主要从角动量驱动的强磁场生成和涡旋强激光的加速效应等方面展开;同时也探索基于涡旋光的新型诊断原理、新型PIC算法和面向下一代强激光和XFEL的SF-QED效应。潜在应用包括紧凑型电子与离子加速器、高亮度X与伽马光源和快点火驱动的可控核聚变等。
具体的研究内容可列举三方面: 1 强磁场和高速旋转环境;2 高品质电子束和X光束;3 新的诊断原理和方法探索。
1 强磁场和高速旋转环境
近年来,大型激光装置上的强磁场带来了许多新的研究机遇,包括高能量密度物理、核聚变物理和实验室天体物理等。实验室天体物理有关的研究内容有磁重联、粒子加速等。尤其,天空环境充满磁场分布,许多天文现象都与磁化等离子体有关。以往产生轴向准直强磁场的方法有,逆向法拉第效应、激光驱动线圈、内爆磁场放大等。其中,逆向法拉斯效应有其相对的简单性和易操作性。传统的逆向法拉第效应是基于圆偏振激光光子的吸收。尽管从轨道角动量(Orbital Angular Momentum, OAM)守恒角度较容易理解,但涉及到吸收机制、提高产生磁场强度等问题仍然有待研究。我们将通过理论和PIC(Particle-in-Cell)模拟,利用涡旋光束或多光束环境,寻找更高效的OAM传递机制,从而产生更高的准直自生强磁场,并分析等离子体携带OAM的分布和生成几特斯拉甚至上千特斯拉强度的准直强磁场。由于其准直的拓扑结构相对简单,我们期望在大型激光装置产生的强磁场和高速旋转等离子体环境中,对高能量密度等离子体将产生显著影响,比如质子加速、热电子输运等,并有望模拟更丰富的天体现象。这部分我们也会探索一些强场效应,尤其考虑到强磁场的环境,比如辐射反作用力(radiation reaction)。
Ref.
(1)Y. Shi* et al. PRL 121, 145002 (2018);
(2)Y. Shi, Baifei Shen* et al. PRL 112, 235001 (2014);
(3)Y. Shi* et al. JUSTC 53, 3(2023);
(4)D. R. Blackman et al. PoP 29, 072105 (2022);
(5)Y. Shi et al. NJP. 22, 073067 (2020);
(6)Y. Shi* et al. PRL 130, 155101 (2023);
(7)T. V. Liseykina et al. NJP 18, 072001 (2016).
(8)Yin Shi * et al. Sci. China-Phys. Mech. Astron. 67, 295201 (2024) (Invited Review).
2 粒子束和光子束
已有的研究表明相对论强度的涡旋光束在紧聚焦情况下,轴向电场和轴向磁场也可以到达相对论量级。利用得到的轴向场,可以加速获得亚飞秒的高能电子脉冲链。功率为P[PW]的涡旋光,利用等离子体镜在束腰注入电子可以加速获得能量为E = 500*P^0.5 [MeV]。对于1PW的激光系统,单个电子束的能量可达500MeV,电荷量可达10pc量级。利用神光II 的皮秒、拍瓦激光系统,经过涡旋波前调制,有望获得300个亚飞秒的电子束脉冲链,总电荷量可达10nc。由于具有亚飞秒的时间尺度,有望在后续波荡器中获得相干性较好的X辐射源。不同于激光等离子体尾场加速电子获得单发电子束,该机制可以很好利用皮秒、拍瓦(约1千焦耳)激光系统。对比通常的固体高次谐波机制,后者可以在固体表面产生亚飞秒的密度调制。但电子的平均能量最大可以近似为E = 25*P^0.5 [MeV]。比较之下,加速获得的电子脉冲链相比表面电子震荡,对于高能量光子的生成有望更有优势。加速获得的电子束脉冲链也可以注入后续的波荡器,后者将更利于高品质X光源的生成,并用于等离子体诊断。同时,加速获得的亚飞秒电子束本身也可用于纳秒或皮秒系统生成的等离子体的状态诊断。尤其考虑到传统加速器产生的电子束或X射线难以直接用于大型激光装置的在线诊断,充分利用激光装置内部的光束产生电子或X射线就显得格外重要。 高密度等离子体的诊断常常是低频率探测光无法抵达的,所以发展高品质电子束和X光束可用于“看见”等离子体内部状态,进而有助于研究输运等基础问题。相关结果有望为高能量密度物理的研究提供巨大的潜在应用。
Ref.
(1)Y. Shi* et al. Phys. Rev. Lett. 126, 234801(2021);
(2)Y. Shi*, Plasma Phys. Control. Fusion 63 125032(2021);
(3)Y. Shi*, High Power Laser Sci. Eng. 10, e45(2022)(封面文章);
(4)Y. Shi, Baifei Shen* et al. PRL 112, 235001 (2014);
(5)D. R. Blackman, Y. Shi et al. Commun. Phys. 5:116 (2022);
(6) Yin Shi * et al. Sci. China-Phys. Mech. Astron. 67, 295201 (2024) (Invited Review).
中科大、上师大、美国UCSD合作发表强涡旋光激光等离子体物理综述 (qq.com)
(7) Yin Shi, Baifei Shen*, et al. ,Phys. Plasmas. 20, 093102 (2013).
3 新的诊断原理和方法探索
等离子体诊断手段中,电磁场的散射占据了重要角色。频谱和偏振都携带可提取的信息,也是常见的测量目标。与此同时,光场的波前态也携带着额外信息。比如常见的涡旋光,又称轨道角动量(Orbital Angular Momentum, OAM)光或Laguerre Guassian(LG)光。涡旋光已在量子光学、光通信等领域获得较多研究。但等离子体诊断中尚未有人明确提出利用电磁场的波前测量。对于额外维度的信息测量,总是有望获得更多的信息。尤其考虑到等离子体中的涡旋波、磁化效应等,利用已有的诊断手段不能很好地获得信息。探索OAM的测量来诊断等离子体就显得很有必要。在最前沿的强场QED的研究中,新的诊断方法也需要提出来测试相关理论。诊断手段的提升非常有利于我们对背后物理的理解甚至操控,能极大促进高能量密度物理的研究。大型计算和模拟,也对于新型诊断原理的探索至关重要。