My research focuses on integrating computational approaches, including density functional theory (DFT), ab initio and force field-based molecular dynamics (MD), and machine learning (ML), to discover and refine advanced energy materials and catalysts. The materials I investigate include metals/alloys, metal oxides, quantum dots, 2D materials, MOFs, and amorphous molten salts. My primary goal is to address major challenges in sustainable chemical production, energy conversion, and storage, covering topics such as OER/ORR/HER, H2O/CO2 splitting, and selective hydrocarbon conversion. Additionally, I work on functional materials like semiconductors.
Through interdisciplinary collaborations, I have contributed 90+ publications in top-tier journals like Science, J. Am. Chem. Soc., Energy Environ. Sci., Nat. Commun., Angew. Chem. Int. Ed., Adv. Mater, accumulating 5100+ citations with an h-index of 35. I was also honored with the Outstanding Researcher Award from the International Institute for Nanotechnology (IIN) at Northwestern University.
Key achievements include:
v Descriptor Engineering for Bridging the Gap between ML and Chemistry:
· Developed IR/Raman-based descriptors for accurately predicting molecular adsorption properties on metals/alloys using ML. Broadens the application of spectroscopic tools in surface chemistry and catalysis (J. Am. Chem. Soc. 2022, 144, 16069).
· Introduced electric dipole-related descriptors for predicting surface−adsorbates interactions (J. Am. Chem. Soc. 2020, 142, 7737), highlighted by Science’s “Editors’ Choice” as “a promising new type of catalytic descriptor” (Science 2020, 368, 727-728).
v High-throughput Material Screening to Guide Experimental Design and Synthesis:
· Established a DFT + ML workflow for rapid exploration of 0.2 million perovskite material space, targeting chemical looping air separation, energy storage, and CO2 splitting. Over 30 predicted materials have been experimentally verified to outperform commercial standards. (Energy Environ. Sci. 2022, 15, 1512; Adv. Energy Mater. 2023, 2203833; Adv. Energy Mater. 2024, 17, 6279)
· Computationally investigated 200+ metal oxide nanoclusters to assess their catalytic activity for methane-to-methanol conversion. (EES Catal. 2024, 2, 351-364; ACS Catal. 2024, 14, 18708)
v Catalytic and Material Mechanism Insights:
Collaborating closely with experimental groups to unravel complexities in the processes and reactions related to CO2 reduction (Science 2024, 384, 540), electrocatalysis (Angew. Chem. Int. Ed. 2021, 60, 19262; Nat. Commun. 2021, 12, 709), photocatalysis (J. Mater. Chem. A 2019, 7, 6143), and chemical looping applications (Sci. Adv. 2022, 8, eabo7343; Nat. Commun. 2022, 13, 718).
Honors and Awards
2024 National Science Fund for Excellent Young Scholars (Overseas), National Natural Science Foundation of China (NSFC) – Highly competitive national award for outstanding overseas researchers
2024 Outstanding Researcher Award, International Institute for Nanotechnology, Northwestern University
2023 Mentor for Silver Award Recipient, S.T. Yau High School Science Award
2021 Nominated for the CUSPEA (China-U.S. Physics Examination and Application) Prize
2019 Top Peer Reviewer in Physics, Publons
2019 Top Peer Reviewer in Chemistry, Publons
2019 Top Peer Reviewer in Cross-Field, Publons
2017 Kwang-Hua Scholarship, USTC
2016 First-order Academic Scholarship, USTC
2015 National Scholarship for Studying Abroad, China Scholarship Council
2015 Xingye Responsibility Scholarship, USTC
2015 First-order Academic Scholarship, USTC
2014 First-order Academic Scholarship, USTC
Publications (96 total, including 44 1st/co-1st/corresponding authored papers) [Citation: 5600+, H-index: 36]
First, co-first (†), and corresponding (*) authored papers:
[1] X. Wang, Z. Li, X. Wang, F. Joodaki, K. Shi, J. Liu, X. Zhang, F. Formalik, O. K. Farha, D. Kohen, R. Q. Snurr, “Machine Learning Interatomic Potentials for Modeling Framework Flexibility and Water Uptake in NbOFFIVE-1-Ni Metal-Organic Framework”, ACS Nano., 2025, Accepted.
[2] S. Wei, X. Hu, R. Yang, B. Liu, Q. Kang*, X. Wang*, Y. Hu*, “Catalytic Nano-Reactor Engineering of Metal Single-Atom Site and Metal-Free Chemical Group for Accelerating Sulfur Redox Electrocatalysis”, Angew. Chem. Int. Ed., 2025, e202517190.
[3] G. Wei, Z. Jiang, X. Wang*, T. Hao, L. Liu, Z. Mao, L. Zhu, X. Xu*, S. Tang*, “Interlayer Space Confined-S Vacancy and Single Atom within Graphene/MoS2 Bilayers: Synergistic Adsorption and Active Site Switching for Enhanced Nitrogen Fixation”, ChemRxiv. 2025, doi:10.26434/chemrxiv-2025-mr0j9.
[4] E. Xie, X. Wang*, J. I. Siepmann, H. Chen, R. Q. Snurr*, “Generative AI for Design of Nanoporous Materials: Review and Future Prospects”, Digit. Discov., 2025, 4, 2336-2363.
[5] S. Wei, M. Sun, J. Huang, Z. Chen*, X. Wang*, L. Gao*, J. Zhang*, “Axial Chlorination Engineering of Single-Atom Nanozyme: Fe-N4Cl Catalytic Sites for Efficient Peroxidase-Mimicking”, J. Am. Chem. Soc. 2024, 146, 33239–33248.
[6] X. Wang, K. Shi, A. Peng, R. Q. Snurr, “Computational Chemistry and Machine Learning-assisted Screening of Supported Amorphous Metal Oxide Nanoclusters for Methane Activation”, ACS Catal., 2024, 14, 18708-18721.
[7] X. Wang, K. Shi, A. Peng, R. Q. Snurr, “Probing the Structure-Catalytic Property Relationship of Supported Copper Oxide Nanoclusters for Methane Activation”, EES Catal., 2024, 2, 351-364.
[8] Y. Wang, H. Huang, X. Wang*, J. Jiang*, “Exploring Enzyme-Mimicking Metal–Organic Frameworks for CO2 Conversion through Vibrational Spectra-Based Machine Learning”, J. Phys. Chem. Lett., 2024, 15, 6654-6661.
[9] E. Xie, X. Wang*, “Fine-Tuning Dual Single-Atom Metal Sites on Graphene toward Enhanced Oxygen Reduction Reaction Activity”, J. Phys. Chem. Lett., 2023, 14, 9392–9402.
[10] X. Wang, S. Jiang, W. Hu, S. Ye, T. Wang, F. Wu, L. Yang, X. Li, G. Zhang, X. Chen, J. Jiang, Y. Luo, “Quantitatively Determining Surface-Adsorbate Properties from Vibrational Spectroscopy with Interpretable Machine Learning”, J. Am. Chem. Soc., 2022, 144, 16069–16076.
[11] X. Wang, Y.Gao, E. Krzystowczyk, S. Iftikhar, J. Dou, R. Cai, H. Wang, C. Ruan, S. Ye, F. Li, “High-Throughput Oxygen Chemical Potential Engineering of Perovskite Oxides for Chemical Looping Applications”, Energy Environ. Sci., 2022, 15, 1512-1528.
[12] X. Wang, E. Krzystowczyk, J. Dou, F. Li, “Net Electronic Charge as an Effective Electronic Descriptor for Oxygen Release and Transport Properties of SrFeO3-based Oxygen Sorbents”, Chem. Mater., 2021, 33, 2446–2456.
[13] X. Wang, S. Ye, W. Hu, E. Sharman, R. Liu, Y. Liu, Y. Luo, J. Jiang, “Electric Dipole Descriptor for Machine Learning Prediction of Catalyst Surface−Molecular Adsorbate Interactions”, J. Am. Chem. Soc., 2020, 142, 7737-7743.
[14] X. Wang, X. Jiang, E. Sharman, L. Yang, X. Li, G. Zhang, J. Zhao, Y. Luo, J. Jiang, “Isolating Hydrogen from Oxygen in Photocatalytic Water Splitting with Carbon-Quantum-Dot/Carbon-Nitride Hybrid”, J. Mater. Chem. A, 2019, 7, 6143-6148.
[15] X. Wang, G. Zhang, Z. Wang, L. Yang, X. Li, J. Jiang, Y. Luo, “Metal-enhanced hydrogenation of graphene with atomic pattern”, Carbon, 2019, 143, 700-705.
[16] X. Wang, G. Zhang, Y. Li, E. Sharman, J. Jiang, “Material descriptors for photocatalyst/catalyst design”, WIREs Comput. Mol. Sci., 2018, e1369.
[17] X. Wang, Z. Wang, J. Jiang, “Insight into Electronic and Structural Reorganizations for Defect-Induced VO2 Metal-Insulator Transition”, J. Phys. Chem. Lett., 2017, 8, 3129−3132.
[18] X. Wang, E. Sharman, G. Zhang, X. Li, J. Jiang, “Carbon Monoxide Oxidation Promoted by Surface Polarization Charges in a CuO/Ag Hybrid Catalyst”, Sci. Rep., 2020, 10, 2552.
[19] X. Wang, J. Jiang, “Design of Nanomaterials and Tuning of Charge Polarization”, 2017, University of Science and Technology of China, Doctoral Thesis.
[20] Y. Wang†, Q. Wang†, X. Wang†, J. Yang, J. Jiang, C. Jia, “Accelerated Design of Dual-Metal-Site Catalysts via Machine-Learning Prediction”, J. Phys. Chem. Lett., 2025, 16, 1424-1431.
[21] H. Dai†, A. Han†, X. Wang†, P. Zhu, D. Wang, Y. Wang, “NIR-triggering cobalt single-atom enzyme switches off-to-on for boosting the interactive dynamic effects of multimodal phototherapy”, Nat. Commun., 2025, 16, 2058.
[22] S. Jiang†, X. Wang†, Y. Chong, Y. Huang, W. Hu, P. E. S. Smith, J. Jiang, S. Feng, “Spectra-Based Machine Learning for Predicting the Statistical Interaction Properties of CO Adsorbates on Surface”, J. Phys. Chem. Lett. 2024, 15, 2400–2404.
[23] R. Cai†, K. Yang†, X. Wang†, M. Rukh, A. Saberi Bosari, E. Giavedoni, A. Pierce, L. Brody, W. Tang, P. R. Westmoreland, F. Li, “High-throughput design of complex oxides as isothermal, redox-activated CO2 sorbents for green hydrogen generation”, Energy Environ. Sci., 2022, 17, 6279-6290.
[24] M. R. Mian†, X. Wang†, X. Wang, K. O. Kirlikovali, K. Ma, K. M. Fahy, R. Q. Snurr, T. Islamoglu, O. K. Farha, “Structure–Activity Relationship Insights for Organophosphonate Hydrolysis at Ti(IV) Active Sites in Metal–Organic Frameworks”, J. Am. Chem. Soc., 2023, 145, 7435–7445.
[25] R. Cai†, H. Bektas†, X. Wang†, K. McClintock, L. Teague, K. Yang, F. Li, “Accelerated Perovskite Oxide Development for Thermochemical Energy Storage by a High-Throughput Combinatorial Approach”, Adv. Energy Mater., 2023, 2203833.
[26] Y. Gao†, X. Wang†, N. Corolla, T. Eldred, A. Bose, W. Gao, F. Li, “Alkali metal halide coated perovskite redox catalysts for anaerobic oxidative dehydrogenation of n-butane”, Sci. Adv., 2022, 8, eabo7343.
[27] C. Ruan†, X. Wang†, C. Wang, L. Li, J. Lin, X. Liu, F. Li, X. Wang, “Selective catalytic oxidation of ammonia to nitric oxide via chemical looping”, Nat. Commun., 2022, 13, 718.
[28] A. Han†, X. Wang†, K. Tang, Z. Zhang, C. Ye, K. Kong, H. Hu, L. Zheng, P. Jiang, C. Zhao, Q. Zhang, D. Wang, Y. Li, “Adjacent Atomic Pt Site Enables Single-Atom Iron with High Oxygen Reduction Reaction Performance”, Angew. Chem. Int. Ed., 2021, 60, 19262-19271.
[29] A. Han†, X. Zhou†, X. Wang†, S. Liu, Q. Xiong, W. Zhang, F. Li, D. Wang, L. Li, Y. Li, “One-Step Synthesis of Single-Site Vanadium Substitution in 1T-WS2 Monolayers for Enhanced Hydrogen Evolution Catalysis”, Nat. Commun., 2021, 12, 709.
[30] C. Jia†, X. Wang†, H. Yin, W. Zhong, E. Sharman, Y. Luo, J. Jiang, “Edge-Effect Enhanced Catalytic CO Oxidation by Atomically Dispersed Pt on Nitride-Graphene”, J. Mater. Chem. A, 2021, 9, 2093-2098.
[31] C. Jia†, Y. Zhang†, X. Wang†, W. Zhong, O. Prezhdo, Y. Luo, J. Jiang, “Sharp-Tip Enhanced Catalytic CO Oxidation by Atomically Dispersed Pt1/Pt2 on Raised Graphene Oxide Platform”, J. Mater. Chem. A, 2020, 8, 12485-12494.
[32] E. Krzystowczyk†, X. Wang†, J. Dou, V. Haribal, F. Li, “Substituted SrFeO3 as Robust Oxygen Sorbents for Thermochemical Air Separation: Correlating Redox Performance with Compositional and Structural Properties”, Phys. Chem. Chem. Phys., 2020, 22, 8924-8932.
[33] Z. Wang†, X. Wang†, W. Liu, X. Ji, C. Wang, “Ohmic Contact Formation Mechanisms of TiN film on 4H-SiC”, Ceram. Int., 2020, 46, 7142-7148.
[34] Y. Zhao†, X. Wang†, S. Yang, E. Kuttner, A. Taylor, R. Salemmilani, X. Liu, M. Moskovits, B. Wu, A. Dehestani, J. Li, M. Chisholm, Z. Tian, F. Fan, J. Jiang, G. Stucky, “Protecting the Nanoscale Properties of Ag Nanowires with an Epitaxially Grown Single SnO2 Monolayer as Corrosion Inhibitor”, J. Am. Chem. Soc., 2019, 141, 13977-13986.
[35] V. P. Haribal†, X. Wang†, R. Dudek, C. Paulus, B. Turk, R. Gupta, F. Li, “Modified Ceria for “Low-Temperature” CO2 Utilization: A Chemical Looping Route to Exploit Industrial Waste Heat”, Adv. Energy Mater., 2019, 9, 41, 1901963.
[36] L. Xie, L. Yang, X. Wang*, J. Jiang, “Bandgap tuning of g-C3N monolayer: A first-principles study”, Chem. Phys., 2019, 520, 40-46.
[37] C. Jia†, X. Wang†, W. Zhong, Z. Wang, L. Wood, O. Prezhdo, J. Jiang, “Catalytic Chemistry Predicted by a Charge Polarization Descriptor: Synergistic O2 Activation and CO Oxidation by Au−Cu Bimetallic Clusters on TiO2(101)”, ACS Appl. Mater. Inter., 2019, 11, 9629-9640.
[38] Q. Zhu†, X. Wang†, J. Jiang, A. Xu, “The “healing” effect of reduced graphene oxide in achieving robust room-temperature dilute ferromagnetism in oxygen deficient titanium dioxide”, J. Phys. Chem. C, 2017, 121, 22806-22814.
[39] N. Du†, C. M. Wang†, X. Wang†, Y. Lin, J. Jiang, Y. Xiong, “Trimetallic TriStar Nanostructures: Tuning Electronic and Surface Structures for Enhanced Electrocatalytic Hydrogen Evolution”, Adv. Mater., 2016, 28, 2077-2084.
[40] S. Chen†, X. Wang†, L. Fan, G. Liao, Y. Chen, W. Chu, L. Song, J. Jiang, C. Zou, “The Dynamic Phase Transition Modulation of Ion-Liquid Gating VO2 Thin Film: Formation, Diffusion, and Recovery of Oxygen Vacancies”, Adv. Funct. Mater., 2016, 26, 3532-3541.
[41] L. Yang†, X. Wang†, G. Zhang, X. Chen, G. Zhang, J. Jiang, “Aggregation-Induced Intersystem Crossing: A Novel Strategy for Efficient Molecular Phosphorescence”, Nanoscale, 2016, 8, 17422-17426.
[42] S. Bai†, X. Wang†, C. Hu, M. Xie, J. Jiang, Y. Xiong, “Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis”, Chem. Commun., 2014, 50, 6094-6097.
[43] R. Huang†, X. Wang†, D. Wang, F. Liu, B. Mei, A. Tang, J. Jiang, G. Liang, “Multifunctional Fluorescent Probe for Sequential Detections of Glutathione and Caspase-3 in Vitro and in Cells”, Anal. Chem., 2013, 82, 6203-6207.
[44] M. Shen†, A. Han†, X. Wang†, Y. G. Ro, A. Kargar, Y. Lin, H. Guo, P. W. Du, J. Jiang, J. Y. Zhang, S. A. Dayeh, B. Xiang, “Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires”, Sci. Rep., 2015, 5, 8557.
Co-authored papers:
[45] M. Kim, S. Kim, X. Wang, R. Q. Snurr, J. T. Hupp, D. Whang, “Adjusting the Criteria for Hydrogen Evolution by Single-Atom Catalysts”, J. Am. Chem. Soc., 2025, 147, 36, 33281-33287.
[46] L. Liu, G. Wei, Z. Mao, T. Hao, L. Zhu, X. Wang, S. Tang, “Optimizing the electron donation and back-donation effect through the combination of d-block transition metal and s-block calcium atoms for efficient nitrogen fixation”, J. Mater. Chem. A, 2025, 13, 20044-20053.
[47] K. Liu, H. Chen, T. Islamoglu, A. S. Rosen, X. Wang, O. K. Farha, R. Q. Snurr, “Computational investigation of the impact of metal–organic framework topology on hydrogen storage capacity”, Mol. Syst. Des. Eng., 2025, Accepted.
[48] X. Tang, X. Wang, S. Su, X. Wang, H. Xie, T. Li, W. Gong, L. Jia, E. Du, K. Xie, Y. Liu, K. O. Kirlikovali, E. H. Sargent, Y. Cui, O. K. Farha, “Solvent-Directed Assembly of π-Stacked 3D Metal–Organic Frameworks with Tunable Conductivity Enhanced by C60 Encapsulation”, J. Am. Chem. Soc., 2025, 147, 24, 20899–20908.
[49] H. Xie, A. Atilgan, F. Joodaki, J. Cui, X. Wang, H. Chen, L. Yang, X. Zhang, F. A. Son, K. B. Idrees, A. M. Wright, J. L. Wells, W. Morris, J. Klein, L. Franklin, F. Harrington, S. Herrington, S. Han, K. O. Kirlikovali, T. Islamoglu, R. Q. Snurr, O. K. Farha, “Hydrolytically Stable Phosphonate‐Based Metal–Organic Frameworks for Harvesting Water from Low Humidity Air”, Small, 2025, 2503178.
[50] Z. Mao, G. Wei, L. Liu, T. Hao, X. Wang, S. Tang, “Synergistic effect of multi-metal site provided by Ni-N4, adjacent single metal atom, and Fe6 nanoparticle to boost CO2 activation and reduction”, J. Colloid Interface Sci., 2025, 679, 860-867.
[51] M. A. Khoshooei, X. Wang, G. Vitale, F. Formalik, K. O. Kirlikovali, R. Q. Snurr, P. Pereira-Almao, O. K. Farha, “An active, stable cubic molybdenum carbide catalyst for the high-temperature reverse water-gas shift reaction”, Science, 2024, 384, 540-546.
[52] L. Yang, Z. Zhao, T. Yang, D. Zhou, X. Yue, X. Li, Y. Huang, X. Wang, R. Zheng, T. Heine, C. Sun, J. Juang, S. Ye, “Monitoring C–C coupling in catalytic reactions via machine-learned infrared spectroscopy”, Natl. Sci. Rev., 2024, nwae389.
[53] A. Stone, A. Fortunato, X. Wang, E. Saggioro, R. Q. Snurr, J. T. Hupp, F. Arcudi, L. Ðorđević, “Photocatalytic Semi‐Hydrogenation of Acetylene to Polymer‐Grade Ethylene with Molecular and Metal–Organic Framework Cobaloximes”, Adv. Mater., 2024, 2408658.
[54] Y. Zhang, D. Wang, G. Wei, B. Li, Z. Mao, S. Xu, S. Tang, J. Jiang, Z. Li, X. Wang, X. Xu, “Engineering Spin Polarization of the Surface-Adsorbed Fe Atom by Intercalating a Transition Metal Atom into the MoS2 Bilayer for Enhanced Nitrogen Reduction”, JACS Au, 2024. 4, 1509-1520.
[55] G. Wei, Z. Mao, L. Liu, T. Hao, L. Zhu, S. Xu, X. Wang, S. Tang, “Rigidly Axial O Coordination-Induced Spin Polarization on Single Ni–N4–C Site by MXene Coupling for Boosting Electrochemical CO2 Reduction to CO”, ACS Appl. Mater. Inter., 2024, 16, 52233-52243.
[56] A. Stone, X. Wang, A. Fortunato, E. Saggioro, R. Q. Snurr, F. Arcudi, J. T. Hupp, L. Dordevic, “Cobaloxime-based homogeneous and metal-organic framework photocatalytic systems for selective reduction of acetylene to ethylene”, ChemRxiv, 2024, doi:10.26434/chemrxiv-2024-rpl60.
[57] K. Zhao, Y. Gao, X. Wang, B. M. Lis, J. Liu, B. Jin, J. Smith, C. Huang, W. Gao, X. Wang, X. Wang, A. Zheng, Z. Huang, J. Hu, R. Schömacker, I. E. Wachs, F. Li, “Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields”, Nat. Commun., 2023, 14, 7749.
[58] F. Formalik, K. Shi, F. Joodaki, X. Wang, R. Q. Snurr, “Exploring the Structural, Dynamic, and Functional Properties of Metal-Organic Frameworks Through Molecular Modeling”, Adv. Func. Mater., 2023, 2308130.
[59] J. G. Knapp, X. Wang, A. S Rosen, X. Wang, X. Gong, M. Schneider, T. Elkin, K. O. Kirlikovali, M. Fairley, M. D. Krzyaniak, M. R. Wasielewski, N. C. Gianneschi, R. Q. Snurr, O. K. Farha, “Evidence of a Uranium-Paddlewheel Node in a Catecholate-Based Metal-Organic Framework”, Angew. Chem. Int. Ed., 2023, e202305526.
[60] A. Han, W. Sun, X. Wan, D. Cai, X. Wang, F. Li, J. Shui, D. Wang, “Construction of Co4 Atomic Clusters to Enable Fe-N4 Motifs with Highly Active and Durable Oxygen Reduction Performance”, Angew. Chem. Int. Ed., 2023, e202303185.
[61] Y. Chong, Y. Huo, S. Jiang, X. Wang, B. Zhang, T. Liu, X. Chen, T. Han, P. E. S. Smith, S. Wang, J. Jiang, “Machine learning of spectra-property relationship for imperfect and small chemistry data”, Proc. Natl. Acad. Sci. U.S.A., 2023, 120, e2220789120.
[62] H. A. Doan, X. Wang, R. Q. Snurr, “Computational Screening of Supported Metal Oxide Nanoclusters for Methane Activation: Insights into Homolytic versus Heterolytic C–H Bond Dissociation”, J. Phys. Chem. Lett., 2023, 14, 5018-5024.
[63] M. Eshete, X. Li, L. Yang, X. Wang, J. Zhang, L. Xie, L. Deng, G. Zhang, J. Jiang, “Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges”, Small Sci., 2023, 2200041.
[64] K. B. Idrees, Z. Li, H. Xie, K. O. Kirlikovali, M. Kazem-Rostami, X. Wang, X. Wang, T. Y. Tai, T. Islamoglu, J. F. Stoddart, R. Q. Snurr, O. K. Farha, “Separation of Aromatic Hydrocarbons in Porous Materials”, J. Am. Chem. Soc., 2022, 144, 12212-12218.
[65] S. Iftikhar, W. Martin, X. Wang, J. Liu, Y. Gao, F. Li, “Ru-promoted perovskites as effective redox catalysts for CO2 splitting and methane partial oxidation in a cyclic redox scheme”, Nanoscale, 2022, 14, 18094.
[66] X. Zhu, Y. Gao, X. Wang, V. Haribal, J. Liu, L. Neal, Z. Bao, Z. Wu, H. Wang, F. Li, “A tailored multi-functional catalyst for ultra-efficient styrene production under a cyclic redox scheme”, Nat. Commun., 2021, 12, 1329.
[67] J. Liu, Y. Gao, X. Wang, F. Li, “Molten-Salt Mediated CO2 Capture and Utilization for Ethane Oxidative Dehydrogenation with Super-Equilibrium CO2 Conversion”, Cell Rep. Phys. Sci., 2021, 2, 100503.
[68] I. Wang, Y. Gao, X. Wang, C. Chung, S. Iftikhar, W. Wang, F. Li, “Liquid Metal Shell as an Effective Iron Oxide Modifier for Redox-based Hydrogen Production at Intermediate-Temperatures”, ACS Catal., 2021, 11, 10228-10238.
[69] W. Zhong, Y. Qiu, H. Shen, X. Wang, J. Yuan, C. Jia, S. Bi, J. Jiang, “Electronic Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on C2N”, J. Am. Chem. Soc., 2021, 143, 4405-4413.
[70] F. Wu, S. Zhan, L. Yang, Z. Zhuo, X. Wang, X. Li, Y. Luo, J. Jiang, “Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction”, J. Phys. Chem. Lett., 2021, 12, 2252-2258.
[71] Q. Dang, S. Tang, T. Liu, X. Li, X. Wang, W. Zhong, Y. Luo, J. Jiang, “Regulating Electronic Spin Moments of Single-Atom Catalyst Sites via Single-Atom Promoter Tuning on S-Vacancy MoS2 for Efficient Nitrogen Fixation” J. Phys. Chem. Lett., 2021, 12, 8355-8362.
[72] F. Zhang, H. Liu, F. Tao, X. Wang, X. Cao, W. Hu, “Tunable Electric and Magnetic Properties of Transition Metal@NxCy-Graphene Materials by Different Metal and Defect Types”, Chem. Asian. J., 2021, 16, 1-7.
[73] Y. Gao, X. Wang, J. Liu, C. Huang, K. Zhao, Z. Zhao, X. Wang, F. Li, “A Molten Carbonate Shell Modified Perovskite Redox Catalyst for Anaerobic Oxidative Dehydrogenation of Ethane”, Sci. Adv., 2020, 6, eaaz9339.
[74] S. Tang, Q. Dang, T. Liu, S. Zhang, Z. Zhou, X. Li, X. Wang, E. Sharman, Y. Luo, J. Jiang, “Realizing a Not-Strong-Not-Weak Polarization Electric Field in Single-Atom Catalysts Sandwiched by Boron Nitride and Graphene Sheets for Efficient Nitrogen Fixation”, J. Am. Chem. Soc., 2020, 142, 19308-19315.
[75] M. Eshete, L. Yang, E. Sharman, X. Li, X. Wang, G. Zhang, J. Jiang, “Enabling Efficient Charge Separation for Optoelectronic Conversion via an Energy-Dependent Z-Scheme n-Semiconductor-Metal-p-Semiconductor Schottky Heterojunction”, J. Phys. Chem. Lett., 2020, 11, 3313-3319.
[76] Z. Wang, X. Wang, E. Sharman, X. Li, L. Yang, G. Zhang, J. Jiang, “Tuning Phase Transitions in Metal Oxides by Hydrogen-Doping: A First-Principles Study”, J. Phys. Chem. Lett., 2020, 11, 1075-1080.
[77] J. Sun, S. Feng, X. Wang, G. Zhang, Y. Luo, J. Jiang, “Regulation of Electronic Structure of Graphene Nanoribbon by Tuning Long-Range Dopant–Dopant Coupling at Distance of Tens of Nanometers”, J. Phys. Chem. Lett., 2020, 11, 6907-6913.
[78] H. Yu, Y. Wang, X. Wang, J. Zhang, S. Ye, Y. Huang, Y. Luo, E. Sharman, S. Chen, J. Jiang, “Using machine learning to predict the dissociation energy of organic carbonyls”, J. Phys. Chem. A, 2020, 124, 3844-3850.
[79] S. Lv, X. Li, L. Yang, X. Wang, J. Zhang, G. Zhang, J. Jiang, “Azopyrazole-Based Photoswitchable Anion Receptor for Dihydrogen Phosphate Transport”, J. Phys. Chem. A, 2020, 124, 9692-9697.
[80] J. Dou, E. Krzystowczyk, X. Wang, T. Robbins, L. Ma, X. Liu, F. Li, “A- and B-site Codoped SrFeO3 Oxygen Sorbents for Enhanced Chemical Looping Air Separation”, ChemSusChem, 2020, 13, 385-393.
[81] J. Dou, E. Krzystowczyk, X. Wang, A. Richard, T. Robbins, F. Li, “Sr1-xCaxFe1-yCoyO3-δ as facile and tunable oxygen sorbents for chemical looping air separation”, J. Phys. Energy, 2020, 2, 025007.
[82] L. Yang, X. Li, Y. Huang, S. Feng, X. Wang, X. Jiang, X. Li, J. Zhao, Y. Luo, G. Zhang, J. Jiang, “Physically Close yet Chemically Separate Reduction and Oxidation Sites in Double-Walled Nanotubes for Photocatalytic Hydrogen Generation”, J. Phys. Chem. Lett., 2019, 10, 3739-3743.
[83] T. Yang, Y. Huang, L. Yang, X. Li, X. Wang, G. Zhang, Y. Luo, J. Jiang, “Protecting Single Atom Catalysts with Graphene/Carbon-Nitride “Chainmail””, J. Phys. Chem. Lett., 2019, 10, 3129-3133.
[84] L. Xie, X. Li, X. Wang, W. Ge, J. Zhang, J. Jiang, G. Zhang, “Bimetallic Pd/Co Embedded in Two-Dimensional Carbon-Nitride for Z-Scheme Photocatalytic Water Splitting”, J. Phys. Chem. C, 2019, 123, 1846-1851.
[85] L. Li, L. Yang, X. Wang, Y. Ni, J. Jiang, G. Zhang, “Immobilizing copper-supported graphene with surface hydrogenation or hydroxylation: A first-principle study”, Chem. Phys., 2019, 523, 183-190.
[86] G. Zhang, L. Yang, X. Wang, Z. Wu, J. Jiang, Y. Luo, “Energy Materials Design for Steering Charge Kinetics”, Adv. Mater., 2018, 1801988.
[87] L. Yang, X. Li, G. Zhang, P. Cui, X. Wang, Y. Luo, J. Jiang, “Combining photocatalytic hydrogen generation and capsule storage in graphene based sandwich structures”, Nat. Commun., 2017, 8, 16049.
[88] X. Li, P. Cui, W. Zhong, J. Li, X. Wang, Z. W. Wang, J. Jiang, “Graphitic carbon nitride supported single-atom catalysts for efficient oxygen evolution reaction”, Chem. Commun., 2016, 52, 13233-13236.
[89] W. Jiang, S. Bai, L. Wang, X. Wang, L. Yang, Y. R. Li, D. Liu, X. N. Wang, Z. Q. Li, J. Jiang, Y. J. Xiong, “Integration of Multiple Plasmonic and Co-Catalyst Nanostructures on TiO2 anosheets for Visible-NearInfrared Photocatalytic Hydrogen Evolution”, Small, 2016, 12, 1640-1648.
[90] W. Chen, X. Sun, X. Wang, Q. Huang, X. Li, Q. Zhang, J. Jiang, G. Zhang, “Efficient and tunable fluorescence energy transfer via long-lived polymer excitons”, Polym. Chem., 2015, 6, 1698.
[91] X. Sun, X. Wang, X. Li, J. Ge, Q. Zhang, J. Jiang, G. Zhang, “Polymerization-Enhanced Intersystem Crossing: New Strategy to Achieve Long-lived Exciton”, Macromol Rapid Comm., 2015, 36, 298-303.
[92] Y. Bai, W. Zhang, Z. Zhang, J. Zhou, X. Wang, C. Wang, W. Huang, J. Jiang, Y. Xiong,“Controllably Interfacing with Metal: A Strategy for Enhancing CO Oxidation on Oxide Catalysts by Surface Polarization”, J. Am. Chem. Soc., 2014, 136, 14650-14653.
[93] L. Wang, J. Ge, A. Wang, M. Deng, X. Wang, S. Bai, R. Li, J. Jiang, Q. Zhang, Y. Luo, Y. Xiong, “Designing p-Type Semiconductor-Metal Hybrid Structures for Improved Photocatalysis”, Angew. Chem. Int. Ed., 2014, 126, 5207-5211.
[94] R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, “Integration of an Inorganic Semiconductor with a Metal-Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions”, Adv. Mater., 2014, 26:4783.
[95] R. Li, J. Hu, M. Deng, H. Wang, X. Wang, Y. Hu, H. Jiang, J. Jiang, Q. Zhang, Y. Xie, Y. Xiong, “Metal–Organic Frameworks: Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions (Adv. Mater. 28/2014)”, Adv. Mater., 2014, 26:4907.
[96] Y. Yuan, X. Wang, B. Mei, D. Zhang, A. Tang, L. An, X. He, J. Jiang, G. Liang, “Labeling Thiols on Proteins, Living Cells, and Tissues with Enhanced Emission Induced by FRET”, Sci. Rep., 2013, 3, 3523.


English
登录
