QR code

Welcome to visit !
You are the th visitor.

Open time: ..

The Last Update Time: ..

  • 夏银华 ( Associate professor )

    My personal homepage http://faculty.ustc.edu.cn/yhxia/en/index.htm

  •   Associate professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates
Publications Current position: Home >> Publications

Publications in Refereed Journals

  1. L. Wei, L. Zhou and Y. Xia. The jump filter in the discontinuous Galerkin method for hyperbolic conservation lawsJournal of Computational Physics520 (2025), 113498.

  2.  J. Zhang, Y. Xia and Y. Xu. Well-balanced path-conservative discontinuous Galerkin methods with equilibrium preserving space for two-layer shallow water equationsJournal of Computational Physics520 (2025), 113473.

  3.  S. Hou, Y. Chen, and Y. Xia. A reduced basis warm-start iterative solver for the parameterized linear systems Beijing Journal of Pure and Applied Mathematics, to appear.

  4. L. Yao, Y. Xia and Y. Xu. Stability of implicit deferred correction methods based on BDF methods Applied Mathematics Letters158 (2024), 109225.

  5. L. Wei and Y. Xia. Steady-state simulation of Euler equations by the discontinuous Galerkin method with the hybrid limiterJournal of Computational Physics515 (2024), 113288.

  6. J. Zhang, Y. Xia and Y. Xu. Equilliburm preserving space in discontinuous Galerkin methods for hyperbolic balance lawsCommunications in Computational Physics, to appear.

  7. S. Hou and Y. Xia. Discontinuous Galerkin method based on the reduced space for the nonlinear convection-diffusion-reaction equationJournal of Scientific Computing99:19 (2024).

  8. L. Wei and Y. Xia. An indicator-based hybrid limiter in discontinuous Galerkin methods for hyperbolic conservation lawsJournal of Computational Physics498 (2024), 112676.

  9. L. Yao, Y. Xia and Y. Xu. L-stable spectral deferred correction methods and applications to phase field modelsApplied Numerical Mathematics197 (2024), 288-306.

  10. F. Yan, J.J.W. van der Vegt, Y. Xia and Y. Xu. Entropy dissipative higher order accurate positivity preserving time-implicit discretizations for nonlinear degenerate parabolic equationsJournal of Computational and Applied Mathematics441 (2024), 115674.

  11. F. Yan, J.J.W. van der Vegt, Y. Xia and Y. Xu. Higher order accurate bounds preserving time-implicit discretizations for the chemically reactive Euler equationsCommunications in Computational Physics, to appear.

  12. W. Zhang, Y. Xing, Y. Xia and Y. Xu. High order structure-preserving arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for the Euler equations under gravitational fieldsComputers and Mathematics with Applications146 (2023), pp. 339-359.

  13. R. Guo, and Y. Xia. Arbitrary high-order fully-decoupled numerical schemes for phase-field models of two-phase incompressible flowsCommunications on Applied Mathematics and Computation6 (2024), pp. 625-657.

  14. J. Zhang, Y. Xia, and Y. Xu. Moving water equilibria preserving discontinuous Galerkin method for the shallow water equationsJournal of Scientific Computing95:48 (2023).

  15. Y. Wan, and Y. Xia. A hybrid WENO scheme for steady Euler equations in curved geometries on Cartesian gridsCommunications in Computational Physics33 (2023), pp. 1270-1331.

  16. J. Zhang, Y. Xia, and Y. Xu. Structure-preserving finite volume arbitrary Lagrangian-Eulerian WENO schemes for the shallow water equationsJournal of Computational Physics473 (2023), 111758.

  17. P. Fu, and Y. Xia. The positivity preserving property on the high order arbitrary Lagrangian-Eulerian discontinuous Galerkin method for Euler equationsJournal of Computational Physics470 (2022), 111600.

  18. S. Hou, Y. Chen, and Y. Xia. Fast L2 optimal mass transport via reduced basis methods for the Monge-Ampère equationSIAM Journal on Scientific Computing44(6) (2022), A3536-A3559.

  19. Y. Liu, J. Lu, Q. Tao and Y. Xia. An oscillation-free discontinuous Galerkin method for shallow water equationsJournal of Scientific Computing92:109 (2022).

  20. Y. Wan, and Y. Xia. A hybrid WENO scheme for steady-state simulations of Euler equationsJournal of Computational Physics463 (2022), 111292.

  21. Z. Xue, Y. Xia, C. Li and X. Yuan. A simplified multilayer perceptron detector for the hybrid WENO schemeComputers and Fluids244 (2022), 105584.

  22. B. Li, Y. Xia and Z. Yang. Optimal convergence of arbitrary Lagrangian-Eulerian iso-parametric finite element methods for parabolic equations in an evolving domainIMA Journal of Numerical Analysis43(2023), pp. 501-534.

  23. W. Zhang, Y. Xing, Y. Xia and Y. Xu. High-order positivity-preserving well-balanced discontinuous Galerkin methods for Euler equations with gravitation on unstructured meshesCommunications in Computational Physics32 (2022), pp. 771-815.

  24. L. Zhou and Y. Xia. Arbitrary Lagrangian-Eulerian local discontinuous Galerkin method for linear convection-diffusion equationsJournal of Scientific Computing90:21 (2022).

  25. W. Zhang, Y. Xia and Y. Xu. Positivity-preserving well-balanced arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for the shallow water equations  Journal of Scientific Computing88:57 (2021).

  26. Y. Wan and Y. Xia. A new hybrid WENO scheme with the high-frequency region for hyperbolic conservation lawsCommunications on Applied Mathematics and Computation,  5 (2023), pp. 199-234.

  27. X. Hong and Y. Xia. Arbitrary Lagrangian-Eulerian discontinuous Galerkin methods for KdV type equationsCommunications on Applied Mathematics and Computation4(2022), pp. 530-562 .

  28. C. Zhang, Y. Xu and Y. Xia. Local discontinuous Galerkin methods to a dispersive system of KdV-type equationsJournal of Scientific Computing86:4 (2021).

  29. J. Zhao, Q. Zhang, Y. Yang and Y. Xia. Conservative discontinuous Galerkin methods for the nonlinear Serre equationsJournal of Computational Physics421 (2020), 109729.

  30. Y. Li, J. Cheng, Y. Xia and C.-W. Shu. On moving mesh WENO schemes with characteristic boundary conditions for Hamilton-Jacobi equationsComputers and Fluids205 (2020), 104582.

  31. Q. Zhang, and Y. Xia. Discontinuous Galerkin methods for the Ostrovsky-Vakhnenko equationJournal of Scientific Computing82:24 (2020).

  32. X. Hong, and Y. Xia. Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for hyperbolic equations involving $\delta$-singularitiesSIAM Journal on Numerical Analysis58 (2020), pp. 125-152.

  33. Q. Zhang, and Y. Xia. Discontinuous Galerkin methods for short pulse type equations via hodograph transformationsJournal of Computational Physics399 (2019), 108928.

  34. Y. Li, J. Cheng, Y. Xia and C.-W. Shu. High order arbitrary Lagrangian-Eulerian finite difference WENO scheme for Hamilton-Jacobi equationsCommunications in Computational Physics26 (2019), pp. 1530-1574.

  35. J.J.W. van der Vegt, Y. Xia and Y. Xu. Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizationsSIAM Journal on Scientific Computing41 (2019), pp. A2037-A2063.

  36. Q. Tao, and Y. Xia. Error estimates and post-processing of local discontinuous Galerkin method for Schrödinger equationsJournal of Computational and Applied Mathematics356 (2019), pp. 198-218.

  37. P. Fu, G. Schnücke, and Y. Xia. Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshesMathematics of Computation88 (2019), pp. 2221-2255.

  38. C. Zhang, Y. Xu and Y. Xia. Local discontinuous Galerkin methods for the μ-Camassa–Holm and μ-Degasperis–Procesi equationsJournal of Scientific Computing79 (2019), pp. 1294-1334.

  39. C. Sun, and Y. Xia. Asymptotic preserving spectral deferred correction methods for hyperbolic systems with relaxationCommunications in Computational Physics26 (2019), pp. 531-557.

  40. L. Zhou, Y. Xia, and C.-W. Shu. Stability analysis and error estimates of arbitrary Lagrangian-Eulerian discontinuous Galerkin method coupled with Runge-Kutta time-marching for linear conservation lawsESAIM: Mathematical Modelling and Numerical Analysis53 (2019), pp. 105-144.

  41. Q. Zhang, and Y. Xia. Conservative and dissipative local discontinuous Galerkin methods for Korteweg-de Vries type equationsCommunications in Computational Physics25 (2019), pp. 532-563.

  42. Z. Cao, P. Fu, L.-W. Ji, and Y. Xia. Application of local discontinuous Galerkin method to Einstein equationsInternational Journal of Modern Physics D28 (2019), 1950014.

  43. C. Klingenberg, G. Schnücke, and Y. Xia. An arbitrary Lagrangian-Eulerian local discontinuous Galerkin method for Hamilton-Jacobi equationsJournal of Scientific Computing73 (2017), pp. 906-942.

  44. R. Guo, Y. Xia and Y. Xu. Semi-implicit spectral deferred correction methods for highly nonlinear partial differential equationsJournal of Computational Physics,  338 (2017), pp. 269-284.

  45. Y. Xia, and Y. Xu. Weighted essentially non-oscillatory schemes for Degasperis-Procesi equation with discontinuous solutionsAnnals of Mathematical Sciences and Applications(2017), pp. 319-340.

  46. C. Klingenberg, F. Pörner, and Y. Xia. An efficient implementation of the divergence free constraint in a discontinuous Galerkin method for magnetohydrodynamics on unstructured meshesCommunications in Computational Physics21 (2017), pp. 423-442.

  47. C. Klingenberg, G. Schnücke, and Y. Xia. Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimensionMathematics of Computation86 (2017), pp. 1203-1232.

  48. Y. Xia. A fully discrete stable discontinuous Galerkin method for the thin film epitaxy problem without slope selectionJournal of Computational Physics280 (2015), pp. 248-260.

  49. Y. Xia. Fourier spectral methods for Degasperis-Procesi equation with discontinuous solutionsJournal of Scientific Computing61 (2014), pp. 584-603.

  50. R. Guo, Y. Xia, and Y. Xu. An efficient fully-discrete local discontinuous Galerkin method for the Cahn-Hilliard-Hele-Shaw systemJournal of Computational Physics264 (2014), pp.23-40.

  51. Y. Xia, Y. Xu. A conservative local discontinuous Galerkin method for the Schrödinger-KdV systemCommunications in Computational Physics15 (2014), pp. 1091-1107.

  52. W. Zhu, L.-L Feng, Y. Xia, C.-W. Shu, Q. Gu, and L.-Z. Fang. Turbulence in the intergalactic medium: solenoidal and dilatational motions and the impact of numerical viscosityThe Astrophysical Journal777:48 (2013).

  53. Y.Z. Tao, Y.Q. Jiang, J. Du, S.C. Wong, P. Zhang, Y.H. Xia, K. Choi. Dynamic system-optimal traffic assignment for a city using the continuum modeling approachJournal of Advanced Transportation48 (2014), pp. 782-797.

  54. R.-Y. Guo, S. C. Wong; Y. Xia, H.-J. Huang, W. H. K. Lam, and K. Choi. Empirical Evidence for the Look-Ahead Behavior of Pedestrians in Bi-directional FlowsChinese Physics Letter29 (2012), 068901.

  55. X. Zhang, Y. Xia and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshesJournal of Scientific Computing50 (2012), pp.29-62.

  56. Y. Xia, Y. Xu and C.-W. Shu. Local discontinuous Galerkin methods for the generalized Zakharov systemJournal of Computational Physics, 229 (2010), pp. 1238-1259.

  57. Y. Xia, S.C. Wong and C.-W. Shu. Dynamic continuum pedestrian flow model with memory effect,  Physical Review E, 79 (2009), article number 066113.

  58. L. Huang, Y. Xia, S.C. Wong, C.-W. Shu, M. Zhang and W.H.K. Lam. A dynamic continuum model for bi-directional pedestrian flowsProceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics162 (2009), pp.67-75.

  59. Y. Xia, S.C. Wong, M.P. Zhang, C.-W. Shu and W.H.K. Lam. An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow modelInternational Journal for Numerical Methods in Engineering, 76 (2008), pp. 337-350.

  60. Y. Xia, Y. Xu and C.-W. Shu. Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard systemCommunications in Computational Physics, (2009), pp. 821-835.

  61. Y. Xia, Y. Xu and C.-W. Shu. Local discontinuous Galerkin methods for the Cahn-Hilliard type equationsJournal of Computational Physics,  227 (2007), pp. 472-491.

  62. Y. Xia, Y. Xu and C.-W. Shu. Efficient time discretization for local discontinuous Galerkin methodsDiscrete and Continuous Dynamical Systems - Series B(2007), pp. 677-693.

  63. D. Xiao, J.X. Ma, Y. Li, Y. Xia and M.Y. Yu. Evolution of nonlinear dust-ion-acoustic waves in an inhomogeneous plasmaPhysics of Plasmas 13 (2006), 052308.

Publications in Proceedings

  1. C. Klingenberg, G. Schnücke, and Y. Xia. An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: Entropy stability, In: Klingenberg C., Westdickenberg M. (eds) Theory, Numerics and Applications of Hyperbolic Problems II. HYP 2016, pp. 209-219. Springer Proceedings in Mathematics & Statistics, vol 237. Springer, Cham.

  2. J. Gallego, J. Loebbert, P. Bastian, C. Klingenberg, Y. Xia. Implementing a discontinuous Galerkin method for the compressible, inviscid Euler equations in the DUNE framework, Proceedings in Applied Mathematics and Mechanics, Vol. 14,1 (2014).

  3. Y. Liang, Y. Xia and P. Bons. Grain growth and dissolution during crystal-melt interaction, Conference on Goldschmidt 2010 - Earth, Energy, and the Environment.

  4. Y. Liang, A. Schiemenz, Y. Xia and M. Parmentier. High porosity harzburgite and dunite channels for the transport of compositionally heterogeneous melts in the mantle: II. Geochemical consequences, AGU Fall meeting, 2009.

  5. Y. Xia, L. Huang, S.C. Wong, M. Zhang, C.-W. Shu and W.H.K. Lam. The follow-the-crowd effect in a pedestrian flow model, the Proceedings of the 12th International Conference of Hong Kong Society for Transportation Studies, December 2007, Hong Kong, pp.309-317.



Back to Yinhua Xia


Copyright © 2013 University of Science and Technology of China.