• 其他栏目

    赵泉

    • 特任研究员 博士生导师 硕士生导师
    • 教师英文名称:Quan Zhao
    • 电子邮箱:
    • 学历:研究生(博士)毕业
    • 办公地点:数学学院新楼603
    • 联系方式:quanzhao@ustc.edu.cn
    • 学位:博士学位
    • 毕业院校:新加坡国立大学
    • 学科:数学

    访问量:

    开通时间:..

    最后更新时间:..

    科学研究

    当前位置: 中文主页 >> 科学研究


        Quan Zhao (赵泉)   

       


     I have conducted research in modeling and simulation for interface problems; structure-preserving  numerical methods for geometric evolution equations; numerical methods for multiphase flows; numerical  analysis and scientific computing;computational and applied mathematics in general.




    Preprint:

    [30] Thermodynamically Consistent Modeling and Stable ALE Approximations of Reactive Semi-Permeable Interfaces (with W. Shi, S. Xu and Z. Zhang), arXiv: 2507.14774.

    [29] An energy-stable parametric finite element method for Willmore flow with normal-tangential velocity splitting (with H. Garcke and R. Nürnberg), arXiv: 2507.00193.

    [28] Stable fully practical finite element methods for axisymmetric Willmore flow (with H. Garcke and R. Nürnberg), arXiv: 2505.06195.

    [27] Stable fully discrete finite element methods with BGN tangential motion for Willmore flow of planar curves (with H. Garcke and R. Nürnberg), arXiv: 2503.23152.

    Published:

    [26] A structure-preserving parametric finite element method for solid-state dewetting on curved substrates (with Y. Li and W. Bao), Commun. Nonlinear Sci. Numer., Vol 146 (2025), article 108767 (arXiv: 2410.00438).

    [25] A variational front-tracking method for multiphase flow with triple junctions   (with H. Garcke and R. Nürnberg), Math. Comput., Vol to appear (2025).

    [24] Dynamics of small solid particles on substrates of arbitrary topography (with W. Jiang, Y. Wang, T. Qian, D. Srolovitz and W. Bao), Acta Mater., Vol 281 (2024), article 120407.

    [23] A Parametric finite element approximations for anisotropic surface diffusion with axisymmetric geometry (with M. Li), J. Comput. Phys. , Vol 497 (2024), article 112632.

    [22] Arbitrary Lagrangian-Eulerian finite element approximations for axisymmetric two-phase flow (with H. Garcke and R. Nürnberg), Comput. Math. Appl. , Vol 155 (2024), pp. 209-223.

    [21] Unfitted finite element methods for axisymmetric two-phase flow (with H. Garcke and R. Nürnberg), J. Sci. Comput. , Vol 97 (2023), article 14.

    [20] Structure-preserving discretizations for two-phase Navier-Stokes flow using fitted and unfitted mesh approaches (with H. Garcke and R. Nürnberg), J. Comput. Phys. , Vol 489 (2023), article 112276.

    [19] A diffuse-interface approach for solid-state dewetting with anisotropic surface energies (with H. Garcke, P. Knopf and R. Nürnberg), J. Nonlinear Sci., Vol 33,34 (2023).

    [18] An energy-stable parametric finite element method for simulating solid-state dewetting in three dimensions (with W. Bao), J. Comput. Math., Vol 41 (2023), pp. 771–796.

    [17] A structure-preserving finite element method of surface diffusion for curve networks and surface clusters (with W. Bao, H. Garcke and R. Nürnberg),  Numer. Methods Partial Diff. Equ., Vol 39 (2023), pp. 759-794.

    [16]  A level set method for the simulation of moving contact line in three dimensions (with S. Xu and W. Ren),  Commu. Comput. Phys. , Vol 32 , (2022), pp. 1310-1331.

    [15] Volume-preserving parametric finite element methods for axisymmetric geometric evolution equations (with W. Bao, H. Garcke and R. Nürnberg), J. Comput. Phys. , Vol 460 , (2022), article 111180.

    [14] A structure-preserving parametric finite element method for surface diffusion (with W. Bao), SIAM J. Numer. Anal. , Vol 59 , (2021), pp.2775-2799.

    [13] A thermodynamically consistent model and its conservative numerical approximation for moving contact lines with soluble surfactant (with W. Ren and Z. Zhang), Comput. Methods Appl. Mech. Eng. , Vol 385 , (2021), article 114033.

    [12] A finite element method for electrowetting on dielectric (with W. Ren), J. Comput. Phys. , Vol 429 , (2021), article 109998.

    [11]  A &#952-L formulation-based finite element method for axisymmetric solid-state dewetting (with W. Huang and W. Jiang), East Asian J. Appl. Math. , Vol 11 , (2021),  pp. 389-405.

    [10] An energy-stable parametric finite element method for simulating solid-state dewetting (with W. Jiang and W. Bao), IMA J. Numer. Anal. , Vol 41 , (2021),  pp. 2026–2055.

    [9] An energy-stable finite element method for the simulation of moving contact lines in two-phase flows (with W. Ren), J. Comput. Phys. , Vol 417 , (2020), article 109582.

    [8] A parametric finite element method for solid-state dewetting in three dimensions (with W. Jiang and W. Bao), SIAM J. Sci. Comput. , Vol 42 , (2020), pp. B327-B352.

    [7] Sharp-interface model for simulating solid-state dewetting in three dimensions (with W. Jiang and W. Bao), SIAM J. Appl. Math. , Vol 80 , (2020), pp. 1654-1677.

    [6] A sharp-interface model and its numerical approximation for solid-state dewetting with axisymmetric geometry , J. Comput. Appl. Math. , Vol 361 , (2019), pp. 144-156.

    [5] Sharp-interface approach for simulating solid-state dewetting in two dimensions: a Cahn-Hoffman ξ-vector formulation (with W. Jiang), Physica D., Vol 390 , (2019), pp. 69-83.

    [4] Application of the Onsager's variational principle to the dynamics of a solid toroidal island on a substrate (with W. Jiang, T. Qian, D. Srolovitz and W. Bao), Acta Mater., Vol 163 , (2019), pp. 154-160.

    [3] Triple junction drag effects during topological changes in the evolution of polycrystalline microstructures (with W. Jiang, W. Bao and D. Srolovitz), Acta Mater., Vol 128 (2017), pp. 345-350.

    [2] A parametric finite element method for solid-state dewetting problems with anisotropic surface energies (with W. Bao, W. Jiang and Y. Wang), J. Comput. Phys. , Vol 330 (2017), pp. 380-400.

    [1] Solid-state dewetting and island morphologies in strongly anisotropic materials (with W. Jiang, Y. Wang, W. Bao and D. Srolovitz), Scri. Mater. , Vol 115 (2016), pp. 123-127.