• 其他栏目

    王允坤

    • 特任研究员 博士生导师 硕士生导师
    • 教师拼音名称:Wang Yunkun
    • 电子邮箱:
    • 办公地点:安徽省合肥市徽州大道1129号中国科学技术大学南校区第一实验楼502室
    • 学位:博士
    • 毕业院校:中国科学技术大学

    访问量:

    开通时间:..

    最后更新时间:..

    期刊论文

    当前位置: 中文主页 >> 著作信息 >> 期刊论文

    (1) Li, H.; Zeng, B.; Tuo, J.; Wang, Y.; Sheng, G.-P.; Wang, Y. Development of an Improved Deep Network Model as a General Technique for Thin Film Nanocomposite Reverse Osmosis Membrane Simulation. Journal of Membrane Science 2024, 692, 122320. https://doi.org/10.1016/j.memsci.2023.122320.

    (2) Wang, J.; Zhang, H.; Wang, Y.; Dilxat, D.; Tian, R.; Tang, Y.; Mei, H.; Wang, Y.; Shen, H.; Li, W.-H.; Wang, Y. Ionic Liquid-Functionalized Antibiofouling Nanofiltration Membranes. Desalination 2024, 572, 117120. https://doi.org/10.1016/j.desal.2023.117120.

    (3) Dilxat, D.; Xie, D.; Wang, J.; Habibul, N.; Zhang, H.-C.; Sheng, G.-P.; Wang, Y. Molecular Design of Ultrafiltration Membranes with Antibacterial Properties for the Inactivation of Antibiotic-Resistant Bacteria. Journal of Membrane Science 2023, 122131. https://doi.org/10.1016/j.memsci.2023.122131.

    (4) Li, H.; Zeng, B.; Qiu, T.; Huang, W.; Wang, Y.; Sheng, G.-P.; Wang, Y. Deep Learning Models for Assisted Decision-Making in Performance Optimization of Thin Film Nanocomposite Membranes. Journal of Membrane Science 2023, 687, 122093. https://doi.org/10.1016/j.memsci.2023.122093.

    (5) Li, J.; Qiu, X.; Ren, S.; Liu, H.; Zhao, S.; Tong, Z.; Wang, Y. High Performance Electroactive Ultrafiltration Membrane for Antibiotic Resistance Removal from Wastewater Effluent. Journal of Membrane Science 2023, 672, 121429. https://doi.org/10.1016/j.memsci.2023.121429.

    (6) Zhao, Q.; Hu, Z.; Zhang, J.; Wang, Y. Determination of the Fate of Antibiotic Resistance Genes and the Response Mechanism of Plants during Enhanced Antibiotic Degradation in a Bioelectrochemical-Constructed Wetland System. Journal of Hazardous Materials 2023, 451, 131207. https://doi.org/10.1016/j.jhazmat.2023.131207.

    (7) Dilxat, D.; Habibul, N.; Sheng, G.-P.; Wang, Y. High Performance Polyvinylidene Fluoride Membrane Functionalized with Poly(Ionic Liquid) Brushes for Dual Resistance to Organic and Biological Fouling. Separation and Purification Technology 2023, 312, 123415. https://doi.org/10.1016/j.seppur.2023.123415.

    (8) Li, H.; Wang, Y.; Wang, Y. Machine Learning for Predicting the Dynamic Extraction of Multiple Substances by Emulsion Liquid Membranes. Separation and Purification Technology 2023, 123458. https://doi.org/10.1016/j.seppur.2023.123458.

    (9) Ren, S.; Guo, N.; Li, J.; Wang, Y. Integration of Antibacterial and Photocatalysis onto Polyethersulfone Membrane for Fouling Mitigation and Contaminant Degradation. Journal of Environmental Chemical Engineering 2023, 11 (5), 110401. https://doi.org/10.1016/j.jece.2023.110401.

    (10) Xie, D.; Zhao, H.; Dilxat, D.; Ren, S.; Wang, Y. Antibiofouling Polyvinylidene Fluoride Membrane Functionalized by Diblock Copoly(Ionic Liquid) Brushes. ACS EST Eng. 2023. https://doi.org/10.1021/acsestengg.3c00105.

    (11) Guo, J.; Wang, B.; Qiu, X.; Ren, S.; Wang, Y. Improvement of Chlorination and Sterilization of Pathogenic Bacteria by Natural Products. Journal of Hazardous Materials Advances 2023, 10, 100318. https://doi.org/10.1016/j.hazadv.2023.100318.

    (12) Li, J.; Ren, S.; Qiu, X.; Zhao, S.; Wang, R.; Wang, Y. Electroactive Ultrafiltration Membrane for Simultaneous Removal of Antibiotic, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes from Wastewater Effluent. Environ. Sci. Technol. 2022, 56 (21), 15120–15129. https://doi.org/10.1021/acs.est.2c00268.

    (13) Zheng, F.; Wang, Y. Removal of Antibiotics and Antibiotic Resistance Genes by Self-Assembled Nanofiltration Membranes with Tailored Selectivity. Journal of Membrane Science 2022, 659, 120836. https://doi.org/10.1016/j.memsci.2022.120836.

    (14) Yan, R.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. Determination of the Lower Limits of Antibiotic Biodegradation and the Fate of Antibiotic Resistant Genes in Activated Sludge: Both Nitrifying Bacteria and Heterotrophic Bacteria Matter. Journal of Hazardous Materials 2022, 425, 127764. https://doi.org/10.1016/j.jhazmat.2021.127764.

    (15) Zhao, H.; Ren, S.; Zucker, I.; Bai, Y.; Wang, Y. Antibiofouling Polyvinylidene Fluoride Membrane Functionalized by Poly(Ionic Liquid) Brushes via Atom Transfer Radical Polymerization. ACS EST Eng. 2022, 2 (7), 1239–1249. https://doi.org/10.1021/acsestengg.1c00440.

    (16) Ren, S.; Huang, G.; Wang, Y. Quorum Quenching-Mediated Biofilm Mitigation on Functionalized Ultrafiltration Membranes via Atom Transfer Radical Polymerization. ACS EST Eng. 2022, 2 (12), 2275–2286. https://doi.org/10.1021/acsestengg.2c00216.

    (17) Tian, R.; Ma, X.; Wang, Y.; Mei, H.; Wang, Y. Inhibition of Membrane Biofouling by Grafting Quorum Sensing Inhibitors onto Ultrafiltration Membranes. Journal of Hazardous Materials Advances 2022, 8, 100182. https://doi.org/10.1016/j.hazadv.2022.100182.

    (18) Li, J.; Guo, N.; Zhao, S.; Xu, J.; Wang, Y. Mechanisms of Metabolic Performance Enhancement and ARGs Attenuation during nZVI-Assisted Anaerobic Chloramphenicol Wastewater Treatment. Journal of Hazardous Materials 2021, 419, 126508. https://doi.org/10.1016/j.jhazmat.2021.126508.

    (19) Feng, Y.; Guo, N.; Ren, S.; Xie, X.; Xu, J.; Wang, Y. AgNPs@ZIF-8 Hybrid Material-Modified Polyethersulfone Microfiltration Membranes for Antibiofouling Property and Permeability Improvement. Chemical Engineering & Technology 2021, 44 (2), 265–272. https://doi.org/10.1002/ceat.202000417.

    (20) Wang, Y.; Zucker, I.; Boo, C.; Elimelech, M. Removal of Emerging Wastewater Organic Contaminants by Polyelectrolyte Multilayer Nanofiltration Membranes with Tailored Selectivity. ACS EST Eng. 2021, 1 (3), 404–414. https://doi.org/10.1021/acsestengg.0c00160.

    (21) Wang, Y.; Lee, J.; Werber, J. R.; Elimelech, M. Capillary-Driven Desalination in a Synthetic Mangrove. Science Advances 2020, 6 (8), eaax5253. https://doi.org/10.1126/sciadv.aax5253.

    (22) Li, J.; Liu, R.; Zhao, S.; Wang, S.; Wang, Y. Simultaneous Desalination and Nutrient Recovery during Municipal Wastewater Treatment Using Microbial Electrolysis Desalination Cell. Journal of Cleaner Production 2020, 261, 121248. https://doi.org/10.1016/j.jclepro.2020.121248.

    (23) Guo, N.; Ma, X.; Ren, S.; Wang, S.; Wang, Y. Mechanisms of Metabolic Performance Enhancement during Electrically Assisted Anaerobic Treatment of Chloramphenicol Wastewater. Water Research 2019, 156, 199–207. https://doi.org/10.1016/j.watres.2019.03.032.

    (24) Ma, X.; Guo, N.; Ren, S.; Wang, S.; Wang, Y. Response of Antibiotic Resistance to the Co-Existence of Chloramphenicol and Copper during Bio-Electrochemical Treatment of Antibiotic-Containing Wastewater. Environment International 2019, 126, 127–133. https://doi.org/10.1016/j.envint.2019.02.002.

    (25) Boo, C.; Wang, Y.; Zucker, I.; Choo, Y.; Osuji, C. O.; Elimelech, M. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environ. Sci. Technol. 2018, 52 (13), 7279–7288. https://doi.org/10.1021/acs.est.8b01040.

    (26) Ren, S.; Boo, C.; Guo, N.; Wang, S.; Elimelech, M.; Wang, Y. Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Environ. Sci. Technol. 2018, 52 (15), 8666–8673. https://doi.org/10.1021/acs.est.8b01888.

    (27) Guo, N.; Wang, Y.; Tong, T.; Wang, S. The Fate of Antibiotic Resistance Genes and Their Potential Hosts during Bio-Electrochemical Treatment of High-Salinity Pharmaceutical Wastewater. Water Research 2018, 133, 79–86. https://doi.org/10.1016/j.watres.2018.01.020.

    (28) Shi, B.-J.; Wang, Y.; Geng, Y.-K.; Liu, R.-D.; Pan, X.-R.; Li, W.-W.; Sheng, G.-P. Application of Membrane Bioreactor for Sulfamethazine-Contained Wastewater Treatment. Chemosphere 2018, 193, 840–846. https://doi.org/10.1016/j.chemosphere.2017.11.051.

    (29) Guo, N.; Wang, Y.; Yan, L.; Wang, X.; Wang, M.; Xu, H.; Wang, S. Effect of Bio-Electrochemical System on the Fate and Proliferation of Chloramphenicol Resistance Genes during the Treatment of Chloramphenicol Wastewater. Water Research 2017, 117, 95–101. https://doi.org/10.1016/j.watres.2017.03.058.

    (30) Liu, R.; Wang, Y.; Wu, G.; Luo, J.; Wang, S. Development of a Selective Electrodialysis for Nutrient Recovery and Desalination during Secondary Effluent Treatment. Chemical Engineering Journal 2017, 322, 224–233. https://doi.org/10.1016/j.cej.2017.03.149.

    (31) Wang, Y.-K.; Geng, Y.-K.; Pan, X.-R.; Sheng, G.-P. In Situ Utilization of Generated Electricity for Nutrient Recovery in Urine Treatment Using a Selective Electrodialysis Membrane Bioreactor. Chemical Engineering Science 2017, 171, 451–458. https://doi.org/10.1016/j.ces.2017.06.002.

    (32) Wang, Y.-K.; Sheng, G.-P.; Li, W.-W.; Huang, Y.-X.; Yu, Y.-Y.; Zeng, R. J.; Yu, H.-Q. Development of a Novel Bioelectrochemical Membrane Reactor for Wastewater Treatment. Environ. Sci. Technol. 2011, 45 (21), 9256–9261. https://doi.org/10.1021/es2019803.

    (33) Wang, Y.-K.; Li, W.-W.; Sheng, G.-P.; Shi, B.-J.; Yu, H.-Q. In-Situ Utilization of Generated Electricity in an Electrochemical Membrane Bioreactor to Mitigate Membrane Fouling. Water Research 2013, 47 (15), 5794–5800. https://doi.org/10.1016/j.watres.2013.06.058.

    (34) Wang, Y.-K.; Sheng, G.-P.; Li, W.-W.; Yu, H.-Q. A Pilot Investigation into Membrane Bioreactor Using Mesh Filter for Treating Low-Strength Municipal Wastewater. Bioresource Technology 2012, 122, 17–21. https://doi.org/10.1016/j.biortech.2012.04.020.

    (35) Wang, Y.-K.; Pan, X.-R.; Sheng, G.-P.; Li, W.-W.; Shi, B.-J.; Yu, H.-Q. Development of an Energy-Saving Anaerobic Hybrid Membrane Bioreactors for 2-Chlorophenol-Contained Wastewater Treatment. Chemosphere 2015, 140, 79–84. https://doi.org/10.1016/j.chemosphere.2014.04.101.

    (36) Wang, Y.-K.; Sheng, G.-P.; Ni, B.-J.; Li, W.-W.; Zeng, R. J.; Wang, Y.-Q.; Shi, B.-J.; Yu, H.-Q. Simultaneous Carbon and Nitrogen Removals in Membrane Bioreactor with Mesh Filter: An Experimental and Modeling Approach. Chemical Engineering Science 2013, 95, 78–84. https://doi.org/10.1016/j.ces.2013.03.025.

    (37) Wang, Y.-K.; Sheng, G.-P.; Shi, B.-J.; Li, W.-W.; Yu, H.-Q. A Novel Electrochemical Membrane Bioreactor as a Potential Net Energy Producer for Sustainable Wastewater Treatment. Sci Rep 2013, 3 (1), 1864. https://doi.org/10.1038/srep01864.

    (38) Wang, Y.-K.; Pan, X.-R.; Geng, Y.-K.; Sheng, G.-P. Simultaneous Effective Carbon and Nitrogen Removals and Phosphorus Recovery in an Intermittently Aerated Membrane Bioreactor Integrated System. Sci Rep 2015, 5 (1), 16281. https://doi.org/10.1038/srep16281.