• 其他栏目

    王允坤

    • 特任研究员 博士生导师 硕士生导师
    • 教师拼音名称:Wang Yunkun
    • 电子邮箱:
    • 办公地点:安徽省合肥市徽州大道1129号中国科学技术大学南校区第一实验楼502室
    • 学位:博士
    • 毕业院校:中国科学技术大学

    访问量:

    开通时间:..

    最后更新时间:..

    期刊论文

      (1) Qiu, X.; Wang, B.; Ren, S.; Liu, X.; Wang, Y. Regulation of Quorum Sensing for the Manipulation of Conjugative Transfer of Antibiotic Resistance Genes in Wastewater Treatment System. Water Res. 2024, 253, 121222. https://doi.org/10.1016/j.watres.2024.121222.

      (2) Wang, J.; Zhang, H.; Tian, R.; Shen, H.; Li, W.-H.; Wang, Y. Enhancing Mg2+/Li+ Separation Performance of Nanofiltration Membranes through Polyelectrolyte Modulation and Surface Modification. J. Membr. Sci. 2024, 701, 122725. https://doi.org/10.1016/j.memsci.2024.122725.

      (3) Li, H.; Zeng, B.; Tuo, J.; Wang, Y.; Sheng, G.-P.; Wang, Y. Development of an Improved Deep Network Model as a General Technique for Thin Film Nanocomposite Reverse Osmosis Membrane Simulation. J. Membr. Sci. 2024, 692, 122320. https://doi.org/10.1016/j.memsci.2023.122320.

      (4) Dilxat, D.; Xie, D.; Wang, J.; Habibul, N.; Zhang, H.-C.; Sheng, G.-P.; Wang, Y. Molecular Design of Ultrafiltration Membranes with Antibacterial Properties for the Inactivation of Antibiotic-Resistant Bacteria. J. Membr. Sci. 2024, 690, 122131. https://doi.org/10.1016/j.memsci.2023.122131.

      (5) Ren, S.; Wang, B.; Qiu, X.; Wang, S.; Huang, G.; Wang, Y. Unveiling Antibacterial and Antibiofilm Mechanisms of Methyleugenol: Implications for Ecomaterial Functionalization. ACS EST Eng. 2024, 4 (5), 1206–1217. https://doi.org/10.1021/acsestengg.3c00602.

      (6) Wang, J.; Zhang, H.; Wang, Y.; Dilxat, D.; Tian, R.; Tang, Y.; Mei, H.; Wang, Y.; Shen, H.; Li, W.-H.; Wang, Y. Ionic Liquid-Functionalized Antibiofouling Nanofiltration Membranes. Desalination 2024, 572, 117120. https://doi.org/10.1016/j.desal.2023.117120.

      (7) Zhao, Q.; Hu, Z.; Zhang, J.; Wang, Y. Determination of the Fate of Antibiotic Resistance Genes and the Response Mechanism of Plants during Enhanced Antibiotic Degradation in a Bioelectrochemical-Constructed Wetland System. J. Hazard. Mater. 2023, 451, 131207. https://doi.org/10.1016/j.jhazmat.2023.131207.

      (8) Li, H.; Zeng, B.; Qiu, T.; Huang, W.; Wang, Y.; Sheng, G.-P.; Wang, Y. Deep Learning Models for Assisted Decision-Making in Performance Optimization of Thin Film Nanocomposite Membranes. J. Membr. Sci. 2023, 687, 122093. https://doi.org/10.1016/j.memsci.2023.122093.

      (9) Li, J.; Qiu, X.; Ren, S.; Liu, H.; Zhao, S.; Tong, Z.; Wang, Y. High Performance Electroactive Ultrafiltration Membrane for Antibiotic Resistance Removal from Wastewater Effluent. J. Membr. Sci. 2023, 672, 121429. https://doi.org/10.1016/j.memsci.2023.121429.

      (10) Xie, D.; Zhao, H.; Dilxat, D.; Ren, S.; Wang, Y. Antibiofouling Polyvinylidene Fluoride Membrane Functionalized by Diblock Copoly(Ionic Liquid) Brushes. ACS EST Eng. 2023, 3 (9), 1330–1338. https://doi.org/10.1021/acsestengg.3c00105.

      (11) Dilxat, D.; Habibul, N.; Sheng, G.-P.; Wang, Y. High Performance Polyvinylidene Fluoride Membrane Functionalized with Poly(Ionic Liquid) Brushes for Dual Resistance to Organic and Biological Fouling. Sep. Purif. Technol. 2023, 312, 123415. https://doi.org/10.1016/j.seppur.2023.123415.

      (12) Li, H.; Wang, Y.; Wang, Y. Machine Learning for Predicting the Dynamic Extraction of Multiple Substances by Emulsion Liquid Membranes. Sep. Purif. Technol. 2023, 123458. https://doi.org/10.1016/j.seppur.2023.123458.

      (13) Ren, S.; Guo, N.; Li, J.; Wang, Y. Integration of Antibacterial and Photocatalysis onto Polyethersulfone Membrane for Fouling Mitigation and Contaminant Degradation. J. Environ. Chem. Eng. 2023, 11 (5), 110401. https://doi.org/10.1016/j.jece.2023.110401.

      (14) Guo, J.; Wang, B.; Qiu, X.; Ren, S.; Wang, Y. Improvement of Chlorination and Sterilization of Pathogenic Bacteria by Natural Products. J. Hazard. Mater. Adv. 2023, 10, 100318. https://doi.org/10.1016/j.hazadv.2023.100318.

      (15) Li, J.; Ren, S.; Qiu, X.; Zhao, S.; Wang, R.; Wang, Y. Electroactive Ultrafiltration Membrane for Simultaneous Removal of Antibiotic, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes from Wastewater Effluent. Environ. Sci. Technol. 2022, 56 (21), 15120–15129. https://doi.org/10.1021/acs.est.2c00268.

      (16) Yan, R.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. Determination of the Lower Limits of Antibiotic Biodegradation and the Fate of Antibiotic Resistant Genes in Activated Sludge: Both Nitrifying Bacteria and Heterotrophic Bacteria Matter. J. Hazard. Mater. 2022, 425, 127764. https://doi.org/10.1016/j.jhazmat.2021.127764.

      (17) Zheng, F.; Wang, Y. Removal of Antibiotics and Antibiotic Resistance Genes by Self-Assembled Nanofiltration Membranes with Tailored Selectivity. J. Membr. Sci. 2022, 659, 120836. https://doi.org/10.1016/j.memsci.2022.120836.

      (18) Ren, S.; Huang, G.; Wang, Y. Quorum Quenching-Mediated Biofilm Mitigation on Functionalized Ultrafiltration Membranes via Atom Transfer Radical Polymerization. ACS EST Eng. 2022, 2 (12), 2275–2286. https://doi.org/10.1021/acsestengg.2c00216.

      (19) Zhao, H.; Ren, S.; Zucker, I.; Bai, Y.; Wang, Y. Antibiofouling Polyvinylidene Fluoride Membrane Functionalized by Poly(Ionic Liquid) Brushes via Atom Transfer Radical Polymerization. ACS EST Eng. 2022, 2 (7), 1239–1249. https://doi.org/10.1021/acsestengg.1c00440.

      (20) Tian, R.; Ma, X.; Wang, Y.; Mei, H.; Wang, Y. Inhibition of Membrane Biofouling by Grafting Quorum Sensing Inhibitors onto Ultrafiltration Membranes. J. Hazard. Mater. Adv. 2022, 8, 100182. https://doi.org/10.1016/j.hazadv.2022.100182.

      (21) Li, J.; Guo, N.; Zhao, S.; Xu, J.; Wang, Y. Mechanisms of Metabolic Performance Enhancement and ARGs Attenuation during nZVI-Assisted Anaerobic Chloramphenicol Wastewater Treatment. J. Hazard. Mater. 2021, 419, 126508. https://doi.org/10.1016/j.jhazmat.2021.126508.

      (22) Wang, Y.; Zucker, I.; Boo, C.; Elimelech, M. Removal of Emerging Wastewater Organic Contaminants by Polyelectrolyte Multilayer Nanofiltration Membranes with Tailored Selectivity. ACS EST Eng. 2021, 1 (3), 404–414. https://doi.org/10.1021/acsestengg.0c00160.

      (23) Feng, Y.; Guo, N.; Ren, S.; Xie, X.; Xu, J.; Wang, Y. AgNPs@ZIF-8 Hybrid Material-Modified Polyethersulfone Microfiltration Membranes for Antibiofouling Property and Permeability Improvement. Chem. Eng. Technol. 2021, 44 (2), 265–272. https://doi.org/10.1002/ceat.202000417.

      (24) Wang, Y.; Lee, J.; Werber, J. R.; Elimelech, M. Capillary-Driven Desalination in a Synthetic Mangrove. Sci. Adv. 2020, 6 (8), eaax5253. https://doi.org/10.1126/sciadv.aax5253.

      (25) Li, J.; Liu, R.; Zhao, S.; Wang, S.; Wang, Y. Simultaneous Desalination and Nutrient Recovery during Municipal Wastewater Treatment Using Microbial Electrolysis Desalination Cell. J. Clean. Prod. 2020, 261, 121248. https://doi.org/10.1016/j.jclepro.2020.121248.

      (26) Guo, N.; Ma, X.; Ren, S.; Wang, S.; Wang, Y. Mechanisms of Metabolic Performance Enhancement during Electrically Assisted Anaerobic Treatment of Chloramphenicol Wastewater. Water Res. 2019, 156, 199–207. https://doi.org/10.1016/j.watres.2019.03.032.

      (27) Ma, X.; Guo, N.; Ren, S.; Wang, S.; Wang, Y. Response of Antibiotic Resistance to the Co-Existence of Chloramphenicol and Copper during Bio-Electrochemical Treatment of Antibiotic-Containing Wastewater. Environ. Int. 2019, 126, 127–133. https://doi.org/10.1016/j.envint.2019.02.002.

      (28) Ren, S.; Boo, C.; Guo, N.; Wang, S.; Elimelech, M.; Wang, Y. Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Environ. Sci. Technol. 2018, 52 (15), 8666–8673. https://doi.org/10.1021/acs.est.8b01888.

      (29) Boo, C.; Wang, Y.; Zucker, I.; Choo, Y.; Osuji, C. O.; Elimelech, M. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery. Environ. Sci. Technol. 2018, 52 (13), 7279–7288. https://doi.org/10.1021/acs.est.8b01040.

      (30) Guo, N.; Wang, Y.; Tong, T.; Wang, S. The Fate of Antibiotic Resistance Genes and Their Potential Hosts during Bio-Electrochemical Treatment of High-Salinity Pharmaceutical Wastewater. Water Res. 2018, 133, 79–86. https://doi.org/10.1016/j.watres.2018.01.020.

      (31) Shi, B.-J.; Wang, Y.; Geng, Y.-K.; Liu, R.-D.; Pan, X.-R.; Li, W.-W.; Sheng, G.-P. Application of Membrane Bioreactor for Sulfamethazine-Contained Wastewater Treatment. Chemosphere 2018, 193, 840–846. https://doi.org/10.1016/j.chemosphere.2017.11.051.

      (32) Guo, N.; Wang, Y.; Yan, L.; Wang, X.; Wang, M.; Xu, H.; Wang, S. Effect of Bio-Electrochemical System on the Fate and Proliferation of Chloramphenicol Resistance Genes during the Treatment of Chloramphenicol Wastewater. Water Res. 2017, 117, 95–101. https://doi.org/10.1016/j.watres.2017.03.058.

      (33) Liu, R.; Wang, Y.; Wu, G.; Luo, J.; Wang, S. Development of a Selective Electrodialysis for Nutrient Recovery and Desalination during Secondary Effluent Treatment. Chem. Eng. J. 2017, 322, 224–233. https://doi.org/10.1016/j.cej.2017.03.149.

      (34) Wang, Y.-K.; Geng, Y.-K.; Pan, X.-R.; Sheng, G.-P. In Situ Utilization of Generated Electricity for Nutrient Recovery in Urine Treatment Using a Selective Electrodialysis Membrane Bioreactor. Chem. Eng. Sci. 2017, 171, 451–458. https://doi.org/10.1016/j.ces.2017.06.002.

      (35) Wang, Y.-K.; Pan, X.-R.; Sheng, G.-P.; Li, W.-W.; Shi, B.-J.; Yu, H.-Q. Development of an Energy-Saving Anaerobic Hybrid Membrane Bioreactors for 2-Chlorophenol-Contained Wastewater Treatment. Chemosphere 2015, 140, 79–84. https://doi.org/10.1016/j.chemosphere.2014.04.101.

      (36) Wang, Y.-K.; Pan, X.-R.; Geng, Y.-K.; Sheng, G.-P. Simultaneous Effective Carbon and Nitrogen Removals and Phosphorus Recovery in an Intermittently Aerated Membrane Bioreactor Integrated System. Sci. Rep. 2015, 5 (1), 16281. https://doi.org/10.1038/srep16281.

      (37) Wang, Y.-K.; Li, W.-W.; Sheng, G.-P.; Shi, B.-J.; Yu, H.-Q. In-Situ Utilization of Generated Electricity in an Electrochemical Membrane Bioreactor to Mitigate Membrane Fouling. Water Res. 2013, 47 (15), 5794–5800. https://doi.org/10.1016/j.watres.2013.06.058.

      (38) Wang, Y.-K.; Sheng, G.-P.; Ni, B.-J.; Li, W.-W.; Zeng, R. J.; Wang, Y.-Q.; Shi, B.-J.; Yu, H.-Q. Simultaneous Carbon and Nitrogen Removals in Membrane Bioreactor with Mesh Filter: An Experimental and Modeling Approach. Chem. Eng. Sci. 2013, 95, 78–84. https://doi.org/10.1016/j.ces.2013.03.025.

      (39) Wang, Y.-K.; Sheng, G.-P.; Shi, B.-J.; Li, W.-W.; Yu, H.-Q. A Novel Electrochemical Membrane Bioreactor as a Potential Net Energy Producer for Sustainable Wastewater Treatment. Sci. Rep. 2013, 3 (1), 1864. https://doi.org/10.1038/srep01864.

      (40) Wang, Y.-K.; Sheng, G.-P.; Li, W.-W.; Yu, H.-Q. A Pilot Investigation into Membrane Bioreactor Using Mesh Filter for Treating Low-Strength Municipal Wastewater. Bioresour. Technol. 2012, 122, 17–21. https://doi.org/10.1016/j.biortech.2012.04.020.

      (41) Wang, Y.-K.; Sheng, G.-P.; Li, W.-W.; Huang, Y.-X.; Yu, Y.-Y.; Zeng, R. J.; Yu, H.-Q. Development of a Novel Bioelectrochemical Membrane Reactor for Wastewater Treatment. Environ. Sci. Technol. 2011, 45 (21), 9256–9261. https://doi.org/10.1021/es2019803.



    专利

       

      专利v3.png