顾强强
开通时间:..
最后更新时间:..
研究内容:
在 AI for Science 领域致力于结合人工智能方法辅助计算材料科学方法与应用。包括开发普适的机器学习电子紧束缚哈密顿量模型方法与软件、实现高效准确的大尺寸材料物性模拟、结合机器学习电子紧束缚哈密顿量与非平衡格林函数等手段实现高效准确的半导体器件输运性质模拟等等。
主要论著:
(†Corresponding author,#Co-1st author)
[1]Q. Gu†, Z. Zhouyin, S. K. Pandey, P. Zhang, L. Zhang, and W. E, Deep learning tight-binding approach for large-scale electronic simulations at finite temperatures with ab initio accuracy, Nat Commun 15, 6772 (2024).
[2]Z. Zhouyin, Z. Gan, S. K. Pandey, L. Zhang, and Q. Gu†, Learning Local Equivariant Representations for Quantum Operators, arXiv:2407.06053. submitted in ICLR https://openreview.net/forum?id=kpq3IIjUD3
[3]H. Rong#, Q. Gu#, et al., Dominant charge density order in TaTe4, Phys. Rev. Lett. 133, 116403 (2024).
[4] S. K. Pandey, S. Debnath, Z. Zhouyin, and Q. Gu†, Pitfalls of exchange–correlation functionals in description of magnetism: Cautionary tale of the FeRh alloy, Computational Materials Science 248, 113561 (2025).
[5] B. Hu, Y. Peng, X. Liu, Q. Li, Q. Gu, M. J. Krogstad, R. Osborn, T. Honda, J. Feng, and Y. Li, Absence of magnetoelastic deformation in the spin-chain compound CuBr2, Phys. Rev. B 110, 115142 (2024).
[6] Q. Gu, S. K. Pandey, and Y. Lin, Computational Exploration of a Viable Route to Kitaev-Quantum Spin Liquid Phase in OsCl3, arXiv:2304.04257 (2023). Accepted in Phys. Rev. Res.
[7] Q. Gu†, S. K. Pandey, and R. Tiwari, A computational method to estimate spin-orbital interaction strength in solid state systems, Computational Materials Science 221, 112090 (2023).
[8] S. K. Pandey, Q. Gu, Y. Lin, R. Tiwari, and J. Feng, Emergence of bond-dependent highly anisotropic magnetic interactions in Sr4RhO6: A theoretical study, Phys. Rev. B 107, 115119 (2023).
[9] Q. Gu, L. Zhang, and J. Feng, Neural network representation of electronic structure from ab initio molecular dynamics, Science Bulletin 67, 29 (2022).
[10] X. Zheng#, Q. Gu#, Y. Liu, B. Tong, J.-F. Zhang, C. Zhang, S. Jia, J. Feng, and R.-R. Du, Observation of 1D Fermi arc states in Weyl semimetal TaAs, National Science Review 9, nwab191 (2022).
[11] Z. Shi, Y. Cao, Q. Gu, and J. Feng, Worldline algorithm by oracle-guided variational autoregressive network, Phys. Rev. B 104, 094407 (2021).
[12] X. Zhang#, Q. Gu#, et al., Eightfold fermionic excitation in a charge density wave compound, Phys. Rev. B 102, 035125 (2020).
[13] H. Sun, Z. Shao, T. Luo, Q. Gu, Z. Zhang, S. Li, L. Liu, H. Gedeon, X. Zhang, Q. Bian, J. Feng, J. Wang and M. Pan. Discovery of an unconventional charge modulation on the surface of charge-density-wave material TaTe4, New J. Phys. 22, 083025 (2020).
[14] J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu, J.-H. Chen, J. Feng, and D. Sun, Nonlinear photoresponse of type-II Weyl semimetals, Nat. Mater. 18, 476 (2019).
[15] Y. Li#, Q. Gu#, et al., Nontrivial superconductivity in topological MoTe2− xSx crystals, Proceedings of the National Academy of Sciences 115, 9503 (2018).
[16] Y. Liu#, Q. Gu#, et al., Raman Signatures of Broken Inversion Symmetry and In-Plane Anisotropy in Type-II Weyl Semimetal Candidate TaIrTe4, Advanced Materials 30, 1706402 (2018).
[17] J. Lai, X. Liu, J. Ma, Q. Wang, K. Zhang, X. Ren, Y. Liu, Q. Gu, X. Zhuo, W. Lu, Y. Wu, Y. Li, J. Feng, S. Zhou, J. Chen, and D. Sun. Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2, Advanced Materials 30, 1707152 (2018).
[18] K. Zhang, C. Bao, Q. Gu, X. Ren, H. Zhang, K. Deng, Y. Wu, Y. Li, J. Feng, and S. Zhou, Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2, Nature Communications 7, 1 (2016).