-
教授
博士生导师
硕士生导师
- 教师英文名称:Yong Liu
- 电子邮箱:a037620a077740b8a1b41004d6faebd486c41f122ef9defc3a1f3980a49e8c97b37a4a358b33fde99c7c09d2da9e72fa03c8bbf096dc0589c3a404df6b0607b4bbac2cadc4d05f2562b457383519e425a6300945f7d1ae636071c7f70136fcae943f76ede92c4810fd616a07d596a8806a8632e2ec37161c8bfbc3a966b65efa
- 学历:研究生(博士后)
- 办公地点:中国科学技术大学东区管理科研楼1518
- 联系方式:0551-63600572,18962265504
- 学位:博士
- 毕业院校:北京大学数学科学学院
访问量:
-
[11]Hamel, François; Liu, Yong; Sicbaldi, Pieralberto; Wang, Kelei; Wei, Juncheng,Half-space theorems for the Allen-Cahn equation and related problems.J. Reine Angew. Math. 770 (2021), 113–133,
-
[12]Liu, Yong; Wang, Kelei; Wei, Juncheng,On smooth solutions to one phase-free boundary problem in Rn.Int. Math. Res. Not. IMRN(2021), no. 20, 15682–15732,
-
[13]Ao, Weiwei; Huang, Yehui; Liu, Yong; Wei, Juncheng,Generalized Adler-Moser polynomials and multiple vortex rings for the Gross-Pitaevskii equation.SIAM J. Math. Anal. 53 (2021), no. 6, 6959–6992,
-
[14]Liu, Yong; Wei, Juncheng,Multivortex traveling waves for the Gross-Pitaevskii equation and the Adler-Moser polynomials.SIAM J. Math. Anal. 52 (2020), no. 4, 3546–3579,
-
[15]Chen, Guoyuan; Liu, Yong; Wei, Juncheng,Nondegeneracy of harmonic maps from R^2 to S^2.Discrete Contin. Dyn. Syst. 40 (2020), no. 6, 3215–3233,
-
[16]Yong, Xuelin; Li, Xiaoyu; Huang, Yehui; Ma, Wen-Xiu; Liu, Yong,Rational solutions and lump solutions to the (3+1)-dimensional Mel'nikov equation.Modern Phys. Lett. B 34 (2020), no. 3, 2050033, 14 pp,
-
[17]Liu, Yong; Wei, Juncheng,Nondegeneracy, Morse index and orbital stability of the KP-I lump solution.Arch. Ration. Mech. Anal. 234 (2019), no. 3, 1335–1389,
-
[18]Liu, Yong; Wei, Juncheng,On the Helmholtz equation and Dancer's-type entire solutions for nonlinear elliptic equations.Proc. Amer. Math. Soc. 147 (2019), no. 3, 1135–1148,
-
[19]Liu, Yong; Wei, Juncheng,Nondegeneracy of the traveling lump solution to the 2+1 Toda lattice.J. Math. Phys. 59 (2018), no. 10, 101501, 26 pp,
-
[20]Liu, Yong; Wang, Kelei; Wei, Juncheng,On a free boundary problem and minimal surfaces.Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 4, 993–1017,