-
教授
博士生导师
硕士生导师
- 教师英文名称:Yong Liu
- 电子邮箱:a037620a077740b8a1b41004d6faebd486c41f122ef9defc3a1f3980a49e8c97b37a4a358b33fde99c7c09d2da9e72fa03c8bbf096dc0589c3a404df6b0607b4bbac2cadc4d05f2562b457383519e425a6300945f7d1ae636071c7f70136fcae943f76ede92c4810fd616a07d596a8806a8632e2ec37161c8bfbc3a966b65efa
- 学历:研究生(博士后)
- 办公地点:中国科学技术大学东区管理科研楼1518
- 联系方式:0551-63600572,18962265504
- 学位:博士
- 毕业院校:北京大学数学科学学院
访问量:
-
[21]Yong, Xuelin; Ma, Wen-Xiu; Huang, Yehui; Liu, Yong,Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source.Comput. Math. Appl. 75 (2018), no. 9, 3414–3419,
-
[22]Liu, Yong; Wang, Kelei; Wei, Juncheng,Global minimizers of the Allen-Cahn equation in dimension n≥8.J. Math. Pures Appl. (9) 108 (2017), no. 6, 818–840,
-
[23]Cai, Liu-Ying; Wang, Xin; Wang, Lei; Li, Min; Liu, Yong; Shi, Yu-Ying,Nonautonomous multi-peak solitons and modulation instability for a variable-coefficient nonlinear Schrödinger equation with higher-order effects.Nonlinear Dynam. 90 (2017), no. 3, 2221–2230,
-
[24]Gui, Changfeng; Liu, Yong; Wei, Juncheng,Two-end solutions to the Allen-Cahn equation in R^3.Adv. Math. 320 (2017), 926–992,
-
[25]Gui, Changfeng; Liu, Yong; Wei, Juncheng,On variational characterization of four-end solutions of the Allen-Cahn equation in the plane.J. Funct. Anal. 271 (2016), no. 10, 2673–2700,
-
[26]Kowalczyk, Michał; Liu, Yong; Pacard, Frank; Wei, Juncheng,End-to-end construction for the Allen-Cahn equation in the plane.Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 281–302,
-
[27]Kowalczyk, Michał; Liu, Yong; Wei, Juncheng,Singly periodic solutions of the Allen-Cahn equation and the Toda lattice.Comm. Partial Differential Equations 40 (2015), no. 2, 329–356,
-
[28]Kowalczyk, Michał; Liu, Yong; Pacard, Frank,Multiple end solutions to the Allen-Cahn equation in R^2.Éditions de l'École Polytechnique, Palaiseau, 2014, Exp. No. X, 19 pp. ISBN: 978-2-7302-1633-3,
-
[29]Kowalczyk, Michał; Liu, Yong; Pacard, Frank,The classification of four-end solutions to the Allen-Cahn equation on the plane.Anal. PDE 6 (2013), no. 7, 1675–1718,
-
[30]Liu, Yong,Radial solutions of a class of fully nonlinear elliptic equations.Adv. Differ. Equ. Control Process. 10 (2012), no. 2, 149–159,