以往教学      
       

     
2024春      
“科学与社会”研讨课(2023级)
时间地点:见课程微信群通知
 
     
代数IV习题
地点:5506
时间:周一67、周三67
 
     
中法班讨论班
地点:5307
时间:周三晚11、12、13(19:30开始)
具体时间地点根据报告人个人的时间安排可能有变动(非正常时间地点红字标出)

3月06日(周三19:30) 崔沛仪(Weizmann Institute of Science)【数论、表示论】
地点:5307
p-adic群的表示论
表示论是数学的一个重要分支,它通过将元素表示为线性变换来理解群的结构。它应用于很多数学领域,比如数论,调和分析,以及数学物理。特别的,随着Local Langlands program的出现,p-adic群的表示论成为了目前最受关心的话题之一。在这个报告里,我们会介绍p-adic群及其表示论的基本性质,并介绍它的重要结构:The block decomposition。

3月08日(周五19:30) 陈华一(西湖大学)【代数几何、数论、算术几何】
地点:2104
数的几何
数与形是数学的相互交织的两面。本报告中,我将介绍数与几何的历史,它们之间的关系,以及近代关于数的几何的一些新思想。

3月13日(周三19:30) 冀诸超(西湖大学)【动力系统】
复动力系统中的多复变和算术几何方法
复动力系统主要研究全纯/代数定义的系统的动力系统性质。复动力系统的发展过程中产生了Yoccoz,McMullen,Avila等多位菲尔兹奖得主,与复分析,几何拓扑,算术几何等领域产生了广泛的联系。本次讲座我会介绍复动力系统的历史以及一些最近的进展。我还会介绍我与谢俊逸最近在Dynamical Andre-Oort猜想上的工作,我们使用了多复变和算术几何方法。

3月20日(周三19:30) 韩邦先(山东大学)【度量几何】
最优传输与度量几何
在这个报告中,我们将通过一些基本的概念和例子,介绍最优传输理论、度量几何这两个看似遥远的学科是如何走到一起的。

3月27日(周三19:30) 魏晓利(哈尔滨工业大学)【优化理论、控制论、金融数学】
随机控制简介及其在金融中的应用
本报告从函数极值出发,逐步引入(随机)最优控制问题,然后介绍最优控制常见的两种方法:动态规划原理和随机最大值原理,进而介绍最优控制的一些最新进展,包括平均场博弈和平均场控制,最后简单介绍最优控制在金融上的应用。

4月03日(周三19:30) 郑恺 (中国科学院大学)【微分几何、几何分析】
Singular scalar curvature equations
We will summarize our recent progress on the singular scalar curvature equations. We will further present some, but not all, applications on the existence/uniqueness problems of constant scalar curvature Kaehler metrics on singular varieties.

4月10日(周三19:30) 王斯萌(哈尔滨工业大学)【泛函分析、算子代数】
冯诺伊曼代数分类问题与非交换调和分析
冯诺伊曼代数理论起源于冯诺伊曼等关于量子力学数学基础的研究,可以看成是量子力学所对应的分析与概率理论的框架。从数学上说,冯诺伊曼代数是Hilbert空间上的算子组成的一种拓扑代数,其分类问题十分困难,从中发展出的自由概率、算子空间逼近性质等理论已对随机矩阵、几何群论等数学分支产生了深远影响。本报告将对这一课题的部分历史做简单介绍,并谈一谈冯诺伊曼代数下的调和分析理论在解决上述分类问题时所扮演的重要角色。

4月24日(周三19:30暂定线上) 陈绍示(中国科学院数学与系统科学研究院系统科学研究所)【符号计算、机器证明】
组合恒等式的机器证明
机器证明是数学与计算机科学的交叉领域。20世纪70年代,吴文俊院士在几何定理机器证明方面做出了先驱性工作。与几何定理证明一样,组合恒等式的传统证明方法往往具有高度的技巧性,没有统一性。20世纪90年代,组合学家Wilf和Zeilberger发展了组合恒等式机器证明的算法理论,即WZ理论。该理论彻底改变了组合恒等式与特殊函数论的研究面貌,并成为符号计算应用于组合数学、数论、数学物理等领域的桥梁。本报告将介绍WZ理论的基本算法、最新进展、以及在组合中的一些重要应用。

5月18日(周六19:30) 董世杰(南方科技大学)【微分方程】
Some problems on nonlinear wave-type equations
I will first introduce some nonlinear wave-type equations, including Dirac equations, Klein-Gordon equations, wave equations, and their coupled systems. Then, I will illustrate some problems related to these equations.  

     

     
2023秋      
“科学与社会”研讨课(2023级)
 
     

     
2023春      
代数II(2022级中法班)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。本课程和相应的分析课程使用法国原版预科教材。本课程配有每周4学时的习题课(Travaux Dirigés简称TD,由曹阳老师负责)以及一学期2次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲也会根据第一年的教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,最好以书面形式,发邮件或者写纸条给任何一位任课老师。

上课地点、时间:详见教务系统
习题课:曹阳  口试:吴涵

 

     
代数数论(本研结合)

代数数论的入门课程,介绍代数数论的基本理论知识。肯定不会给出所有证明细节,希望分主题来介绍代数数论中重要的理论。

大致内容(明显80课时无法覆盖这么多内容,随时删减):
1. 代数整数理论,其中包括Dedekind整环,素理想的分解,类数有限性定理,Dirichlet单位定理;
2. 局部域理论,包括赋值论,p-adic数的概念,完备化,Hensel引理,赋值的扩充;
3. Zeta函数和L函数的定义和解析开拓,类数公式介绍。
4. 特殊数域的算术,包括分圆域和二次数域等。
5. Adele和Idele的概念介绍。
6. 椭圆曲线简介。
7. 类域论简介。

参考讲义:打算主要参考J. Milne的代数数论讲义,结合其他若干本代数数论国内外教材。

 

     

     
2022秋      

代数I(中法班大一)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。使用法国原版预科教材。本课程配有每周4学时的习题课(Travaux Dirigés简称TD)以及一学期至少一次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier
GTM73、GTM211

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲 根据教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,可以以书面形式,发邮件,发微信或者写纸条给任何一位任课老师。

上课地点:5507
上课时间:2-18周,周二89节、周五34节
习题课时间:周三12节、周五89节(曹阳5306)

     

     
2022春      
代数II(2021级中法班)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。本课程和相应的分析课程使用法国原版预科教材。本课程配有每周4学时的习题课(Travaux Dirigés简称TD,由曹阳老师负责)以及一学期2次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲也会根据第一年的教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,最好以书面形式,发邮件或者写纸条给任何一位任课老师。

上课地点:5506
上课时间:1-18周,周二89节、周四89节
习题课、口试:曹阳 

     

     
2021秋      

代数I(2021级中法班)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。使用法国原版预科教材。本课程配有每周4学时的习题课(Travaux Dirigés简称TD)以及一学期至少一次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲 根据教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,可以以书面形式,发邮件,发微信或者写纸条给任何一位任课老师。

上课地点:5506
上课时间:2-18周,周一34节、周三67节
习题课时间:周二67节、周四89节(曹阳)

     
       
代数与算术 习题课(2019级中法班)      
任课老师Sinnou David      
习题课时间地点:10-18周,具体待安排见课程微信群通知      

     
2021夏(8月 南京大学夏季学期)      
       
数论选讲      
这是一门20小时的短课程,介绍一些数论的知识(适合大二大三的同学),希望能够包括以下内容:
(1)二次互反律
(2)数域、代数整数环
(3)类数有限定理、Dirichlet单位定理
(4)p-进数域
(5)椭圆曲线简介
预备知识:线性代数、近世代数基本知识
     
参考文献:
冯克勤, 代数数论
M. Hindry, Arithmétique
J. Milne, Algebraic Number Theory
J. Silvermann and J. Tate, Rational points on elliptic curves
     
在线板书截屏:
12345678910
     
       

     
2021春      
       
代数II(2020级中法班)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。本课程和相应的分析课程使用法国原版预科教材。本课程配有每周4学时的习题课(Travaux Dirigés简称TD,由曹阳老师负责)以及一学期2次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲也会根据第一年的教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,最好以书面形式,发邮件或者写纸条给任何一位任课老师。

上课地点:5506
上课时间:1-18周,周一34节、周三34节
习题课、口试:曹阳

     
       
华罗庚讨论班(H)(2018级华罗庚班)

下学期报告次序安排 周二晚上5106

1-杨笑东 3.9
题目:Dyson Brownian motion
摘要:Over the decades, stochastic analysis theory and random matrix theory both witnessed astonishing developments. As a combination of both two theories, Dyson Brownian motion describes the evolutionary propertis of some matrix-valued stochastic process, serving as the most fundamental model in exploring dynamical propositions of random matrices. At first, this model was intriduced in statistical physics, to characterize Comlumb gas model. In this talk, we will briefly review the basics of Brownian motion and basics of stochastic analysis, and then explore fundamental results of Dyson Brownian motion.

2-杨小鼎 3.16
题目:极小曲面
1:对上节课的回顾与引入极小曲面方程。
2:用shauder不动点定理将方程的解转化为有界估计。
3:方程的holder估计。
4:方程的梯度估计。

3-郭龙欣 2.23
题目:Local Cohomology
摘要:Last time we introduced the geometric aspect of local cohomology, as the right derived functors of the section functor with locally closed supports. This time we will introduce the algebraic aspect of it, as the right derived functors of the α-torsion functor.

4-宋晨锴 3.30
题目:The square peg problem and the rectangular peg problem
摘要:Last time we learned the history of the Square Peg Problem and the Rectangular Peg Problem. This time we will go through Joshua Evan Greene and Andrew Lobb’s proof of the Rectangular Peg Problem for smooth Jordan curves. I will introduce some basic concepts in symplectic topology first to help us understand the proof.

5-田珺昊 4.6
题目:Kahler-Ricci流的奇点分析问题。
摘要:Ricci流是几何分析领域的重要问题,自Hamilton与Perelman创造并发展至今,解决了包括庞加莱猜想在内的诸多重要问题。一般黎曼流形的Ricci流复杂性极高,我们目前对它的研究只停留在三维,四维及以上的Ricci流仍束手无策。而在Kahler几何中,Ricci流的表现形式相对简单,这使得我们有希望对其进行进一步的研究。尤其是在近十年里,得益于非线性DPE与复代数几何的发展,Kahler-Ricci流取得了一系列重要突破。本次华罗庚讨论班我将主要讲解:利用上同调类刻画Kahler-Ricci流的极大解区间;分别在“坍缩”与“非坍缩”情形下,描述有限时间奇点的极限度量与相关性质;利用复代数几何和Kahler势函数的偏零阶估计,探索长时间解下的度量收敛性问题。最后介绍一下Kahler-Ricci流的最新进展与一些猜想:直径与体积的增长估计,奇点类型的分类问题,等等。(注:本次华讨与我上学期所讲的内容没有直接关联,是两个不同的问题。)
指导老师:王兵、王振建

6-周泽君 4.13
标题:顶点代数
摘要:顶点代数的概念最早由Richard Borcherds引入,来源于二维量子场论。顶点代数被用来证明魔群月光猜想,在共形场论、李群表示论中也有应用。
本次讲座介绍顶点代数的基本定义和演算方法,并给出具体的顶点代数的例子。

7-周佳诺 4.20
标题:Morita Theory and its derived version
摘要:Classic Morita theory investigates conditions under which two rings have equivalent module categories. Derived Morita theory is a generalization of classic Morita theory motivated by representation theory, studying instead conditions under which two rings have triangle equivalent derived categories. This talk goes over the proofs of the main theorem of both theories.
指导老师:陈小伍

8-叶子恺 4.25(周日,五一放假调休)
题目:Propagation of smallness of solutions to Elliptic Equations
摘要:In this lecture, we will use the tool of frequency to prove a general version of Hadamard three circle theorem in complex analysis, called the propagation of smallness property of solutions to elliptic equations, which gives a quantitative characterization of unique continuation. As a corollary, we will derive Donnelly and Fefferman's estimate on doubling index and another estimate, which were mentioned in last lecture.

9-郑伟豪 4.27
题目:Morse theory
摘要:Last time we introduced the basic theory of Morse and gave some examples. This lecture will be divide into two parts. First I will show how to apply Morse theory to get the homotopy type of path space in Riemannian manifold. Second, as an application, I will show the Bott periodic Theorem for the unitary group.

10-王玺斌 5.11
标题:From congruent numbers to elliptic curves
摘要:The congruent number problen was first posed more than a thousand years ago, and it is still not completely solved. In this lecture I will introduce how to transform the congruent number problem into an elliptic curve problem.

11-付杰 5.18
题目:A brief introduction to Hamiltonian system
摘要:This time, I will use something introduced last time to give an brief introduction to Hamiltonian system, which has some connection to physics.
指导老师:赵立丰

12-姚一晨 5.25
题目:Dynamics on Quotients of the hyperbolic plane
摘要:In this talk, we will identify the tangent bundle of the hyperbolic plane with the Lie group PSL2(R), then discuss Hopf’s argument for ergodicity of geodesic flow on PSL2(Z)\PSL2(R). Further, we will give a more general result for ergodic systems on lattices of PSL2(R), and have a quick view at its applications on some concrete lattices.

13-丁楠 6.1
题目:Szemerédi定理中的Furstenburg多元回归性
摘要:Szemerédi定理叙述了一个具有正的banach密度的正整数集必然包含任意长度的等差数列。Furstenburg于1977年利用测度动力系统的方法给出了Szemerédi定理的另一个证明。本次报告将着重于该证明并展示更进一步的结论。
指导老师:黄文

14-赵炜 6.8
题目:The Willmore Conjecture (Ⅱ)
摘要:The Willmore conjecture was proven by Marques and Neves in 2012. This time I will introduce the framework of their proof.

15-陈恒宇 6.15
题目:Topology of the Manifolds with all Geodesics Closed
摘要:If you ask: which manifolds admits a Riemannian metric, such that the geodesics are periodic and of the same length? Then Compact Symmetric Spaces of Rank one (CROSS) will raise their hands. Although far from determining such manifolds, R. Bott and H. Samelson told us: their integral cohomology rings must be the same as CROSS. We will discuss a proof using Morse theory as well as related results.
 

特邀报告:
4月28日周三 16:00-18:00 地点:5107 李欣意(北京大学)[概率论、统计物理] 相变、临界性与普适性
6月5日 周六 8:45-10:15 地点:5207 刘博 (华东师范大学)[拓扑、几何] 拓扑,几何与指标定理
因疫情推迟-
时间地点待定 莫仲鹏(苏州大学)[数论]欧拉,无穷级数,与数论
摘要:在这个专题讲座里,报告人将会讲述,欧拉在无穷级数上的工作,如何揭示了后来数论上的重要发展,特别是 zeta函数和模形式等。

 

     
       

     
2020      
代数I(2020级中法班)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。使用法国原版预科教材。本课程配有每周4学时的习题课(Travaux Dirigés简称TD)以及一学期至少一次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲也会根据第一年的教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,最好以书面形式,发邮件或者写纸条给任何一位任课老师。

上课地点:5506
上课时间:2-18周,周一34节、周三67节
习题课时间:3-18周,周二67节、周四89节(许金兴/曹阳)

     
       
华罗庚讨论班(H)(2018级华罗庚班)

1-18周,周一晚上(19:00开始上课),(5507教室)
选课的学生或者想旁听的学生请联系我并加入课程微信群,日后会在群里发布课程相关的信息。

LaTeX beamer的一个例子/模板

特邀报告:
9.14 王国祯(复旦大学)[拓扑] 广义Poincare猜想简介
9.23 黄冠(清华大学)[动力系统] 弹子球系统:一些典型的动力系统现象及相关的反问题
9.28 章志飞(北京大学)[流体力学、偏微分方程] 流体力学中的偏微分方程问题
10.12 魏巧玲(首都师范大学)[动力系统] 听音辨鼓:平面区域的反谱问题
10.19 安金鹏(北京大学)[动力系统、李群、数论] 齐性动力系统简介
10.26 调课到10.30 于品(清华大学)[偏微分方程、相对论] 波动方程和时空的几何 -  清华学堂班访问中科大活动
11.9 郑维喆(中科院数学所)[数论、代数几何、算术几何] Weil猜想漫谈
11.30 常寅山(四川大学)[概率论] 随机图上的极小生成树
12.7 江智(复旦大学)[复代数几何] Hodge猜想
12.13(周日晚19:00-21:00,5107教室) 李平(同济大学)[几何、组合]从Log-concavity谈起
12.30(周三晚19:15-20:15,5201) 谢俊逸(CNRS Rennes)[代数几何、动力系统]代数动力系统中的复杂性
12.30(
周三晚20:30-21:30,5201) 杨若涛(俄罗斯Skoltech研究所)[数论]从二次互反律到量子朗兰兹

 

12.30(周三8910节,15:45-17:00左右,5506)华罗庚班-中法班 联合活动:浪迹天涯的师兄们 座谈会

 

学生报告
10.31
田珺昊 Calabi-Yau Theory [指导老师:王兵]
Calabi猜想是关于Kahler流形上存在某种“好”的黎曼度量的猜想,自1954年Eugenio Calabi提出后一直是悬而未决的数学难题,1977年丘成桐先生首次给出了Monge-Ampere方程的二阶估计,并解决了第一陈类非正时Kahler-Einstein度量的存在性。1997年田刚提出K-稳定的概念,并证明Fano流形上Kahler-Einstein度量存在一定K-稳定。2012年陈秀雄,孙崧,Donaldson证明了其逆命题也正确。陈秀雄,王兵于2014年给出了Kahler-Einstein度量存在性的Ricci流方法的证明,解决了Kahler-Ricci流中的Hamilton-Tian猜想。目前关于cscK度量存在性的研究仍是Kahler几何的核心问题之一,陈秀雄于2018年开创性地给出了Kahler势函数在cscK某种假设下的先验估计,并证明了cscK的存在性与测地稳定等价。本次报告主要介绍,丘成桐与曹怀东分别利用连续性方法与Ricci流方法证明Calabi猜想,Monge-Ampere方程的估计,以及Kahler-Einstein度量与cscK度量研究的最新进展。

11.2
周泽君 Morse理论 [指导老师:杨迪]
Morse函数是流形上的一类特殊的光滑函数,通过研究它的临界点的性质可以确定流形的同伦类型。本报告将介绍这一方法的具体原理。

杨小鼎 Planteaus minimal submanifolds problem [指导老师:张永兵]
摘要:1:the Douglas Rado solution of the problem on the euclidean space
2:an introduction to the unsolved part of this problem.

11.16
姚一晨 Ergodic Theorems[指导老师:黄文]
摘要:遍历理论主要研究特定对象在保测度映射下的轨道的性质,也就是该对象随时间变化的性质。平均遍历定理和Birkhoff的逐点遍历定理分别描述了可测函数f随时间的平均值在L^2和在逐点意义下的极限。本次报告从保测度映射的定义开始,讲述这两个定理的证明以及它们在概率论和数论中的两个简单应用。

11.23
郭龙欣 Local Cohomology[指导老师:申伊塃]
摘要:Cohomology is a powerful tool in mathmatics, while localization is a significant method for mathmatics. Local cohomology was invited by Grothendick to prove Lefschetz-type theorem in algebraic geometry, and it has widely applications in various fields. This lecture aims at a geometric introduction to local cohomology.

周佳诺 Homotopical Algebra[指导老师:陈小伍]
摘要:Model categories are categories equipped with a model structure: three subsets of morphisms satisfying certain conditions. These conditions make it possible to "do homotopy" in arbitrary model categories in a similar way as doing homotopy in the category of topological spaces. This is what homotopical algebra is concerned with. Many categories that arise in practice, for example the category of topological spaces and categories of chain complexes, admit model structures. This makes homotopical algebra a useful tool in both topology and algebra. This talk will cover the definition and some basic properties of model categories and demonstrate how studying the model category of bounded below chain complexes of an abelian category yields some classical results in homological algebra.

12.14
洪放 平均曲率流初步[指导老师:韦勇]
摘要:平均曲率流是研究n+1维欧式空间的n维嵌入子流形的一个重要工具,在证明等周不等式以及推广的等周不等式中有重要应用,很多几何量在某类特定的平均曲率流下的演化具有很好的性质。本次报告将从平均曲率流的定义开始,并介绍一些几何量(如体积,表面积等)在流下的的演化。
 

叶子恺 Yau's Conjecture on Laplacian Eigenfunctions[指导老师:麻希南]
摘要:Shing-Tung Yau conjectured in 1982 that for any C^{\infty}-smooth closed (compact and without boundary) Riemannian manifold M^n, the n-1-dimensional Hausdorff measure of the nodal (zero) set of Laplacian eigenfunction on M is comparable to $\sqrt{\lambda}$, where $\lambda$ is the corresponding eigenvalue. The upper bound remains open now. The lecture will begin with basic knowledge of Laplaican eigenfunctions and their nodal sets. Then, we will show a sketch of proof of Yau's conjecture for analytic manifolds, which is given by Donnelly and Fefferman in 1988.

12.19(南京大学拔尖班交流)
丁楠 面积公式的证明[指导老师:任广斌]
摘要:面积公式是Hausdorff测度的应用之一。对于一个将R^n映射到R^m的李普希茨连续映射f,n和m之间的大小关系会带来本质上不同的两种分类。其中当m≥n时,面积公式为我们提供了计算f(A)的面积的方法,也就是在A上对f的雅可比行列式进行积分。本次报告将会着重于该面积公式的证明。

12.21
陈恒宇 Manifolds all of whose Geodesics are Closed: Basic Examples[指导老师:王作勤]
摘要:A Riemannian manifold all of whose geodesics are simple and closed with least common period is called an SC-manifold. First examples include spheres and some projective spaces endowed with the canonical Riemannian metrics. In this report, after introducing some basic notions in Riemannian Geometry, we will meet our old friends and make friends with some non-standard SC-metrics on spheres.
 

杨笑东 随机矩阵的大偏差[指导老师:刘党政]
摘要:自上世纪中叶Wigner发现半圆率以来,随机矩阵理论已成为概率论中重要的研究对象,并与其他学科产生了深刻广泛的联系。本次报告将首先介绍Wigner半圆率,再简洁大偏差理论后,我们会陈述Gauss Wigner矩阵的一个大偏差结果,并简述其证明思路。

12.28
付杰 Basic ODE dynamics[指导老师:赵立丰]
摘要:This time, I will start from the dynamics corresponding to ODE, introduce some basic concepts that need to be introduced, and give some simple examples, so as to pave the way for the introduction of Dissipative dynamics and Hamiltonian dynamics next time.

王玺斌 Mordell-Weil Theorem[指导老师:欧阳毅]
摘要:Mordell-Weil theorem is the statement that the group of rational points on elliptic curves over the rational number field is always finitely generated. The proof is motivated by a close examination of Fermat's method of descent. In this report, we will give the definition of the group structure on the elliptic curve, and then show the proof by introducing a suitable notion of height.

1.4
洪放(1.5小时)Mean curvature type flow in space forms[指导老师:韦勇]
Last time we have introduced the concept of hypersurface in Euclidean space and mean curvature flow there. In this lecture we will generalize the outer space where the hypersurfaces lies from the Euclidean spaces to general manifolds, and define mean curvature flow there. Then, we will see the theory of hyperbolic equation can be used to handle flows in space forms (a type of "good" outer spaces). We will show a sketch of the proof that a smooth compact, star-shaped hypersurface in space forms will converge to sphere under a type of flow, which is given by Pengfei Guan and Junfang Li in 2014.

1.11
郑伟豪 Morse理论及应用
[指导老师:杨迪]
摘要:本次报告承接上一次有关Morse理论的学生报告。我们将介绍Morse函数的存在性,并利用具体例子给出用Morse理论确定流形同伦类型的操作方法。

宋晨锴 The square peg problem and the rectangular peg problem[指导老师:王作勤]
摘要:In 1911, Otto Toeplitz asked whether every Jordan curve inscribes a square. It is called the Square Peg Problem and still remains open. The latest result is due to Terence Tao in 2017. In the report I will introduce some major results of the problem and share Vaughan’s proof of a weaker proposition in 1977: every Jordan curve inscribes a rectangle. And finally I’ll take a brief introduction of the Rectangular Peg Problem, which was proved to be positive for smooth Jordan curves by Joshua Evan Greene and Andrew Lobb last year.

赵炜 The Willmore Conjecture (Ⅰ)[指导老师:张希]
摘要:The Willmore conjecture is a famous problem in differential geometry. In 2012, Marques and Neves successfully proved the conjecture. This time I will introduce the history of Willmore conjecture and next time I will introduce the proof.
 

 

     
       
       

     
2020夏(南方科技大学)      
椭圆曲线选讲(暂定6月22日起每周一、三下午14:00-15:30,到七月底总共大约10-12节课,zoom在线上课)

摘要:

介绍椭圆曲线相关的概念。围绕Mordell-Weil定理的证明,介绍椭圆曲线的相关知识,包括高度函数、Galois上同调、Tate-Shafarevich群、局部整体原则等。如果时间允许,还将简单介绍BSD猜想。

预备知识:近世代数(熟悉群、环、域等基本概念,如果了解Galois理论会更好,如果不了解:预计课程中会有一个简短的综述),代数数论(只需要最基础的知识,如果不了解:把课程中所有数域都看成有理数域Q并不妨碍理解课程内容),其他本科阶段的基础数学课程。

课程板书录屏:
(01)6.22 视频 (密码 5W*#4M8%)
(02)6.24 视频 (密码 3B==?o&G
(03)6.29 视频 (密码 5Q#$6JK%课堂上省略的某引理的详细证明(6月29日周一上课时间临时更改为上午9:30-11:00)
(04)7.01 视频 (密码 3A$9*0&D)
(05)7.06 视频 (密码 0j!qI^u4)
(06)7.08 视频 (密码 1M*e=273)
(07)7.13 视频 (密码 9D?=73%G)
(08)7.15 视频 (密码 8Z.Z&X9+)
(09)7.20 视频 (密码 2c$8n!8=)
(10)7.22 视频 (密码 J.D87V1g) 

     

     
2020春      
代数II(2019级中法班)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。本课程和相应的分析课程使用法国原版预科教材。本课程配有每周4学时的习题课(Travaux Dirigés简称TD,由许金兴老师负责)以及一学期2次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲也会根据第一年的教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,最好以书面形式,发邮件或者写纸条给任何一位任课老师。

上课地点:5505
上课时间:1-18周,周一34节、周三67节
习题课和colle时间待安排 

     

     
2019      

代数学 (研究生-本研结合)
教材还是之前那本,我觉得写的不错,已经修改不少笔误,如果这学期有发现将继续更正。同学们发现错误了也请给我发邮件。不过这书即将要出版,出版后这个链接就会撤掉。

时间地点:2-18周,周二34和周四67,教室5206。英文教学,考试也是英文。习题课待安排。

内容:大概分三部分:交换代数、同调代数、表示论,三部分内容都不往深入讲,只讲最基本知识和概念。课程目的是培养基础数学研究生(无论哪个方向)都应该具备的基本代数素养。对于以后想学习/研究代数数论、代数几何、表示论的同学,这门课远远不足够,建议修其他老师开的专门的课程,应该会讲的比我深入。

     
       
代数I(2019级中法班)

这是一门为中法数学英才班设置的课程。是一年级的代数课程。本课程和相应的分析I课程使用法国原版预科教材,本学年由我把教材翻译成中文并负责代数学I的教学,殷浩老师负责分析学I的教学。本课程配有每周4学时的习题课(Travaux Dirigés简称TD,由许金兴老师负责)以及一学期3次的口试训练(Colles)。

除教材外,参考书:
《线性空间引论》陈恭亮、叶明训、郑延履
《Cours De Mathématiques Du Premier Cycle》 Jacques Dixmier

参考法国预科一年级的2013版标准教纲,结合国内的教学情况,中法班委员会拟定了一份中法试验班的教纲。中法班的教学将保证至少覆盖标准教纲并尽量完成中法班教纲。具体教学内容和教学进度会根据学生学习状况反馈及时调整,而并不是盲目遵循预设的教纲,随后的教纲也会根据第一年的教学经验结合实际调整。所以请同学们积极反馈,我们希望收集各类意见让中法班变得更好,最好以书面形式,发邮件或者写纸条给任何一位任课老师。

上课地点:5505
上课时间:2-18周,周一34节、周三67节
习题课时间:3-18周,周三晚上,周四67节 

     

     
2019夏      
纯粹数学前沿      
讲座。数论:几何、分析、代数相交汇的地方      

     
2018秋      
代数学III      
讲义      
地点:教5楼304      
时间:第二周起: 周三晚上 周五早上1,2节      
英文授课      
       
       
       
       

     
回国以前      
Université Paris Diderot - Paris 7      
École Normale Supérieure Cachan      
Université Paris-Sud 11